Metamath Proof Explorer


Theorem gsummulc2

Description: A finite ring sum multiplied by a constant. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 10-Jul-2019) Remove unused hypothesis. (Revised by SN, 7-Mar-2025)

Ref Expression
Hypotheses gsummulc1.b B=BaseR
gsummulc1.z 0˙=0R
gsummulc1.t ·˙=R
gsummulc1.r φRRing
gsummulc1.a φAV
gsummulc1.y φYB
gsummulc1.x φkAXB
gsummulc1.n φfinSupp0˙kAX
Assertion gsummulc2 φRkAY·˙X=Y·˙RkAX

Proof

Step Hyp Ref Expression
1 gsummulc1.b B=BaseR
2 gsummulc1.z 0˙=0R
3 gsummulc1.t ·˙=R
4 gsummulc1.r φRRing
5 gsummulc1.a φAV
6 gsummulc1.y φYB
7 gsummulc1.x φkAXB
8 gsummulc1.n φfinSupp0˙kAX
9 4 ringcmnd φRCMnd
10 ringmnd RRingRMnd
11 4 10 syl φRMnd
12 1 3 ringlghm RRingYBxBY·˙xRGrpHomR
13 4 6 12 syl2anc φxBY·˙xRGrpHomR
14 ghmmhm xBY·˙xRGrpHomRxBY·˙xRMndHomR
15 13 14 syl φxBY·˙xRMndHomR
16 oveq2 x=XY·˙x=Y·˙X
17 oveq2 x=RkAXY·˙x=Y·˙RkAX
18 1 2 9 11 5 15 7 8 16 17 gsummhm2 φRkAY·˙X=Y·˙RkAX