Metamath Proof Explorer
		
		
		
		Description:  Group sum of a singleton, deduction form.  (Contributed by Thierry
       Arnoux, 30-Jan-2017)  (Proof shortened by AV, 11-Dec-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | gsumsnd.b |  | 
					
						|  |  | gsumsnd.g |  | 
					
						|  |  | gsumsnd.m |  | 
					
						|  |  | gsumsnd.c |  | 
					
						|  |  | gsumsnd.s |  | 
				
					|  | Assertion | gsumsnd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumsnd.b |  | 
						
							| 2 |  | gsumsnd.g |  | 
						
							| 3 |  | gsumsnd.m |  | 
						
							| 4 |  | gsumsnd.c |  | 
						
							| 5 |  | gsumsnd.s |  | 
						
							| 6 |  | nfv |  | 
						
							| 7 |  | nfcv |  | 
						
							| 8 | 1 2 3 4 5 6 7 | gsumsnfd |  |