Metamath Proof Explorer


Theorem gsumsnd

Description: Group sum of a singleton, deduction form. (Contributed by Thierry Arnoux, 30-Jan-2017) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsumsnd.b B=BaseG
gsumsnd.g φGMnd
gsumsnd.m φMV
gsumsnd.c φCB
gsumsnd.s φk=MA=C
Assertion gsumsnd φGkMA=C

Proof

Step Hyp Ref Expression
1 gsumsnd.b B=BaseG
2 gsumsnd.g φGMnd
3 gsumsnd.m φMV
4 gsumsnd.c φCB
5 gsumsnd.s φk=MA=C
6 nfv kφ
7 nfcv _kC
8 1 2 3 4 5 6 7 gsumsnfd φGkMA=C