Metamath Proof Explorer


Theorem gsumvallem2

Description: Lemma for properties of the set of identities of G . The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypotheses gsumvallem2.b B=BaseG
gsumvallem2.z 0˙=0G
gsumvallem2.p +˙=+G
gsumvallem2.o O=xB|yBx+˙y=yy+˙x=y
Assertion gsumvallem2 GMndO=0˙

Proof

Step Hyp Ref Expression
1 gsumvallem2.b B=BaseG
2 gsumvallem2.z 0˙=0G
3 gsumvallem2.p +˙=+G
4 gsumvallem2.o O=xB|yBx+˙y=yy+˙x=y
5 1 2 3 4 mgmidsssn0 GMndO0˙
6 1 2 mndidcl GMnd0˙B
7 1 3 2 mndlrid GMndyB0˙+˙y=yy+˙0˙=y
8 7 ralrimiva GMndyB0˙+˙y=yy+˙0˙=y
9 oveq1 x=0˙x+˙y=0˙+˙y
10 9 eqeq1d x=0˙x+˙y=y0˙+˙y=y
11 10 ovanraleqv x=0˙yBx+˙y=yy+˙x=yyB0˙+˙y=yy+˙0˙=y
12 11 4 elrab2 0˙O0˙ByB0˙+˙y=yy+˙0˙=y
13 6 8 12 sylanbrc GMnd0˙O
14 13 snssd GMnd0˙O
15 5 14 eqssd GMndO=0˙