Metamath Proof Explorer


Theorem h2hvs

Description: The vector subtraction operation of Hilbert space. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses h2h.1 U=+norm
h2h.2 UNrmCVec
h2h.4 =BaseSetU
Assertion h2hvs -=-vU

Proof

Step Hyp Ref Expression
1 h2h.1 U=+norm
2 h2h.2 UNrmCVec
3 h2h.4 =BaseSetU
4 df-hvsub -=x,yx+-1y
5 1 2 h2hva +=+vU
6 1 2 h2hsm =𝑠OLDU
7 eqid -vU=-vU
8 3 5 6 7 nvmfval UNrmCVec-vU=x,yx+-1y
9 2 8 ax-mp -vU=x,yx+-1y
10 4 9 eqtr4i -=-vU