Metamath Proof Explorer


Theorem nvmfval

Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nvmval.1 X = BaseSet U
nvmval.2 G = + v U
nvmval.4 S = 𝑠OLD U
nvmval.3 M = - v U
Assertion nvmfval U NrmCVec M = x X , y X x G -1 S y

Proof

Step Hyp Ref Expression
1 nvmval.1 X = BaseSet U
2 nvmval.2 G = + v U
3 nvmval.4 S = 𝑠OLD U
4 nvmval.3 M = - v U
5 2 nvgrp U NrmCVec G GrpOp
6 1 2 bafval X = ran G
7 eqid inv G = inv G
8 2 4 vsfval M = / g G
9 6 7 8 grpodivfval G GrpOp M = x X , y X x G inv G y
10 5 9 syl U NrmCVec M = x X , y X x G inv G y
11 1 2 3 7 nvinv U NrmCVec y X -1 S y = inv G y
12 11 3adant2 U NrmCVec x X y X -1 S y = inv G y
13 12 oveq2d U NrmCVec x X y X x G -1 S y = x G inv G y
14 13 mpoeq3dva U NrmCVec x X , y X x G -1 S y = x X , y X x G inv G y
15 10 14 eqtr4d U NrmCVec M = x X , y X x G -1 S y