Metamath Proof Explorer


Theorem vsfval

Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 27-Dec-2014) (New usage is discouraged.)

Ref Expression
Hypotheses vsfval.2 G = + v U
vsfval.3 M = - v U
Assertion vsfval M = / g G

Proof

Step Hyp Ref Expression
1 vsfval.2 G = + v U
2 vsfval.3 M = - v U
3 df-vs - v = / g + v
4 3 fveq1i - v U = / g + v U
5 fo1st 1 st : V onto V
6 fof 1 st : V onto V 1 st : V V
7 5 6 ax-mp 1 st : V V
8 fco 1 st : V V 1 st : V V 1 st 1 st : V V
9 7 7 8 mp2an 1 st 1 st : V V
10 df-va + v = 1 st 1 st
11 10 feq1i + v : V V 1 st 1 st : V V
12 9 11 mpbir + v : V V
13 fvco3 + v : V V U V / g + v U = / g + v U
14 12 13 mpan U V / g + v U = / g + v U
15 4 14 eqtrid U V - v U = / g + v U
16 0ngrp ¬ GrpOp
17 vex g V
18 17 rnex ran g V
19 18 18 mpoex x ran g , y ran g x g inv g y V
20 df-gdiv / g = g GrpOp x ran g , y ran g x g inv g y
21 19 20 dmmpti dom / g = GrpOp
22 21 eleq2i dom / g GrpOp
23 16 22 mtbir ¬ dom / g
24 ndmfv ¬ dom / g / g =
25 23 24 mp1i ¬ U V / g =
26 fvprc ¬ U V + v U =
27 26 fveq2d ¬ U V / g + v U = / g
28 fvprc ¬ U V - v U =
29 25 27 28 3eqtr4rd ¬ U V - v U = / g + v U
30 15 29 pm2.61i - v U = / g + v U
31 1 fveq2i / g G = / g + v U
32 30 2 31 3eqtr4i M = / g G