Metamath Proof Explorer


Theorem vsfval

Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 15-Feb-2008) (Revised by Mario Carneiro, 27-Dec-2014) (New usage is discouraged.)

Ref Expression
Hypotheses vsfval.2 𝐺 = ( +𝑣𝑈 )
vsfval.3 𝑀 = ( −𝑣𝑈 )
Assertion vsfval 𝑀 = ( /𝑔𝐺 )

Proof

Step Hyp Ref Expression
1 vsfval.2 𝐺 = ( +𝑣𝑈 )
2 vsfval.3 𝑀 = ( −𝑣𝑈 )
3 df-vs 𝑣 = ( /𝑔 ∘ +𝑣 )
4 3 fveq1i ( −𝑣𝑈 ) = ( ( /𝑔 ∘ +𝑣 ) ‘ 𝑈 )
5 fo1st 1st : V –onto→ V
6 fof ( 1st : V –onto→ V → 1st : V ⟶ V )
7 5 6 ax-mp 1st : V ⟶ V
8 fco ( ( 1st : V ⟶ V ∧ 1st : V ⟶ V ) → ( 1st ∘ 1st ) : V ⟶ V )
9 7 7 8 mp2an ( 1st ∘ 1st ) : V ⟶ V
10 df-va +𝑣 = ( 1st ∘ 1st )
11 10 feq1i ( +𝑣 : V ⟶ V ↔ ( 1st ∘ 1st ) : V ⟶ V )
12 9 11 mpbir +𝑣 : V ⟶ V
13 fvco3 ( ( +𝑣 : V ⟶ V ∧ 𝑈 ∈ V ) → ( ( /𝑔 ∘ +𝑣 ) ‘ 𝑈 ) = ( /𝑔 ‘ ( +𝑣𝑈 ) ) )
14 12 13 mpan ( 𝑈 ∈ V → ( ( /𝑔 ∘ +𝑣 ) ‘ 𝑈 ) = ( /𝑔 ‘ ( +𝑣𝑈 ) ) )
15 4 14 syl5eq ( 𝑈 ∈ V → ( −𝑣𝑈 ) = ( /𝑔 ‘ ( +𝑣𝑈 ) ) )
16 0ngrp ¬ ∅ ∈ GrpOp
17 vex 𝑔 ∈ V
18 17 rnex ran 𝑔 ∈ V
19 18 18 mpoex ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) ∈ V
20 df-gdiv /𝑔 = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) )
21 19 20 dmmpti dom /𝑔 = GrpOp
22 21 eleq2i ( ∅ ∈ dom /𝑔 ↔ ∅ ∈ GrpOp )
23 16 22 mtbir ¬ ∅ ∈ dom /𝑔
24 ndmfv ( ¬ ∅ ∈ dom /𝑔 → ( /𝑔 ‘ ∅ ) = ∅ )
25 23 24 mp1i ( ¬ 𝑈 ∈ V → ( /𝑔 ‘ ∅ ) = ∅ )
26 fvprc ( ¬ 𝑈 ∈ V → ( +𝑣𝑈 ) = ∅ )
27 26 fveq2d ( ¬ 𝑈 ∈ V → ( /𝑔 ‘ ( +𝑣𝑈 ) ) = ( /𝑔 ‘ ∅ ) )
28 fvprc ( ¬ 𝑈 ∈ V → ( −𝑣𝑈 ) = ∅ )
29 25 27 28 3eqtr4rd ( ¬ 𝑈 ∈ V → ( −𝑣𝑈 ) = ( /𝑔 ‘ ( +𝑣𝑈 ) ) )
30 15 29 pm2.61i ( −𝑣𝑈 ) = ( /𝑔 ‘ ( +𝑣𝑈 ) )
31 1 fveq2i ( /𝑔𝐺 ) = ( /𝑔 ‘ ( +𝑣𝑈 ) )
32 30 2 31 3eqtr4i 𝑀 = ( /𝑔𝐺 )