Metamath Proof Explorer


Theorem halffl

Description: Floor of ( 1 / 2 ) . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion halffl 12=0

Proof

Step Hyp Ref Expression
1 0re 0
2 halfre 12
3 halfgt0 0<12
4 1 2 3 ltleii 012
5 halflt1 12<1
6 1e0p1 1=0+1
7 5 6 breqtri 12<0+1
8 0z 0
9 flbi 12012=001212<0+1
10 2 8 9 mp2an 12=001212<0+1
11 4 7 10 mpbir2an 12=0