Metamath Proof Explorer


Theorem hash2pr

Description: A set of size two is an unordered pair. (Contributed by Alexander van der Vekens, 8-Dec-2017)

Ref Expression
Assertion hash2pr VWV=2abV=ab

Proof

Step Hyp Ref Expression
1 2nn0 20
2 hashvnfin VW20V=2VFin
3 1 2 mpan2 VWV=2VFin
4 3 imp VWV=2VFin
5 hash2 2𝑜=2
6 5 eqcomi 2=2𝑜
7 6 a1i VFin2=2𝑜
8 7 eqeq2d VFinV=2V=2𝑜
9 2onn 2𝑜ω
10 nnfi 2𝑜ω2𝑜Fin
11 9 10 ax-mp 2𝑜Fin
12 hashen VFin2𝑜FinV=2𝑜V2𝑜
13 11 12 mpan2 VFinV=2𝑜V2𝑜
14 13 biimpd VFinV=2𝑜V2𝑜
15 8 14 sylbid VFinV=2V2𝑜
16 15 adantld VFinVWV=2V2𝑜
17 4 16 mpcom VWV=2V2𝑜
18 en2 V2𝑜abV=ab
19 17 18 syl VWV=2abV=ab