Metamath Proof Explorer


Theorem hashclwwlkn0

Description: The number of closed walks (defined as words) with a fixed length is the sum of the sizes of all equivalence classes according to .~ . (Contributed by Alexander van der Vekens, 10-Apr-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Hypotheses erclwwlkn.w W=NClWWalksNG
erclwwlkn.r ˙=tu|tWuWn0Nt=ucyclShiftn
Assertion hashclwwlkn0 VtxGFinW=xW/˙x

Proof

Step Hyp Ref Expression
1 erclwwlkn.w W=NClWWalksNG
2 erclwwlkn.r ˙=tu|tWuWn0Nt=ucyclShiftn
3 1 2 erclwwlkn ˙ErW
4 3 a1i VtxGFin˙ErW
5 clwwlknfi VtxGFinNClWWalksNGFin
6 1 5 eqeltrid VtxGFinWFin
7 4 6 qshash VtxGFinW=xW/˙x