Metamath Proof Explorer


Theorem hashfz1

Description: The set ( 1 ... N ) has N elements. (Contributed by Paul Chapman, 22-Jun-2011) (Revised by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion hashfz1 N01N=N

Proof

Step Hyp Ref Expression
1 eqid recxVx+10ω=recxVx+10ω
2 1 cardfz N0card1N=recxVx+10ω-1N
3 2 fveq2d N0recxVx+10ωcard1N=recxVx+10ωrecxVx+10ω-1N
4 fzfid N01NFin
5 1 hashgval 1NFinrecxVx+10ωcard1N=1N
6 4 5 syl N0recxVx+10ωcard1N=1N
7 1 hashgf1o recxVx+10ω:ω1-1 onto0
8 f1ocnvfv2 recxVx+10ω:ω1-1 onto0N0recxVx+10ωrecxVx+10ω-1N=N
9 7 8 mpan N0recxVx+10ωrecxVx+10ω-1N=N
10 3 6 9 3eqtr3d N01N=N