Metamath Proof Explorer


Theorem hashge0

Description: The cardinality of a set is greater than or equal to zero. (Contributed by Thierry Arnoux, 2-Mar-2017)

Ref Expression
Assertion hashge0 AV0A

Proof

Step Hyp Ref Expression
1 0domg AVA
2 hashdomi AA
3 hash0 =0
4 3 breq1i A0A
5 4 biimpi A0A
6 1 2 5 3syl AV0A