Metamath Proof Explorer


Theorem hashgt0elexb

Description: The size of a set is greater than zero if and only if the set contains at least one element. (Contributed by Alexander van der Vekens, 18-Jan-2018)

Ref Expression
Assertion hashgt0elexb VW0<VxxV

Proof

Step Hyp Ref Expression
1 hashgt0elex VW0<VxxV
2 n0 VxxV
3 hashgt0 VWV0<V
4 2 3 sylan2br VWxxV0<V
5 1 4 impbida VW0<VxxV