Metamath Proof Explorer


Theorem hatomic

Description: A Hilbert lattice is atomic, i.e. any nonzero element is greater than or equal to some atom. Remark in Kalmbach p. 140. Also Definition 3.4-2 in MegPav2000 p. 2345 (PDF p. 8). (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion hatomic ACA0xHAtomsxA

Proof

Step Hyp Ref Expression
1 neeq1 A=ifACA0A0ifACA00
2 sseq2 A=ifACA0xAxifACA0
3 2 rexbidv A=ifACA0xHAtomsxAxHAtomsxifACA0
4 1 3 imbi12d A=ifACA0A0xHAtomsxAifACA00xHAtomsxifACA0
5 h0elch 0C
6 5 elimel ifACA0C
7 6 hatomici ifACA00xHAtomsxifACA0
8 4 7 dedth ACA0xHAtomsxA
9 8 imp ACA0xHAtomsxA