Description: A Hilbert lattice is atomic, i.e. any nonzero element is greater than or equal to some atom. Remark in Kalmbach p. 140. Also Definition 3.4-2 in MegPav2000 p. 2345 (PDF p. 8). (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hatomic | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 | |
|
2 | sseq2 | |
|
3 | 2 | rexbidv | |
4 | 1 3 | imbi12d | |
5 | h0elch | |
|
6 | 5 | elimel | |
7 | 6 | hatomici | |
8 | 4 7 | dedth | |
9 | 8 | imp | |