Metamath Proof Explorer


Theorem hbsbw

Description: If z is not free in ph , it is not free in [ y / x ] ph when y and z are distinct. Version of hbsb with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 12-Aug-1993) (Revised by Gino Giotto, 23-May-2024)

Ref Expression
Hypothesis hbsbw.1 φzφ
Assertion hbsbw yxφzyxφ

Proof

Step Hyp Ref Expression
1 hbsbw.1 φzφ
2 df-sb yxφww=yxx=wφ
3 1 imim2i x=wφx=wzφ
4 3 alimi xx=wφxx=wzφ
5 19.21v zx=wφx=wzφ
6 5 biimpri x=wzφzx=wφ
7 6 alimi xx=wzφxzx=wφ
8 ax-11 xzx=wφzxx=wφ
9 4 7 8 3syl xx=wφzxx=wφ
10 9 imim2i w=yxx=wφw=yzxx=wφ
11 19.21v zw=yxx=wφw=yzxx=wφ
12 10 11 sylibr w=yxx=wφzw=yxx=wφ
13 12 hbal ww=yxx=wφzww=yxx=wφ
14 2 13 hbxfrbi yxφzyxφ