Metamath Proof Explorer


Theorem hhims2

Description: Hilbert space distance metric. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhnv.1 U=+norm
hhims2.2 D=IndMetU
Assertion hhims2 D=norm-

Proof

Step Hyp Ref Expression
1 hhnv.1 U=+norm
2 hhims2.2 D=IndMetU
3 eqid norm-=norm-
4 1 3 hhims norm-=IndMetU
5 2 4 eqtr4i D=norm-