Metamath Proof Explorer


Theorem hhssnvt

Description: Normed complex vector space property of a subspace. (Contributed by NM, 9-Apr-2008) (New usage is discouraged.)

Ref Expression
Hypothesis hhssnvt.1 W=+H×H×HnormH
Assertion hhssnvt HSWNrmCVec

Proof

Step Hyp Ref Expression
1 hhssnvt.1 W=+H×H×HnormH
2 xpeq1 H=ifHSH0H×H=ifHSH0×H
3 xpeq2 H=ifHSH0ifHSH0×H=ifHSH0×ifHSH0
4 2 3 eqtrd H=ifHSH0H×H=ifHSH0×ifHSH0
5 4 reseq2d H=ifHSH0+H×H=+ifHSH0×ifHSH0
6 xpeq2 H=ifHSH0×H=×ifHSH0
7 6 reseq2d H=ifHSH0×H=×ifHSH0
8 5 7 opeq12d H=ifHSH0+H×H×H=+ifHSH0×ifHSH0×ifHSH0
9 reseq2 H=ifHSH0normH=normifHSH0
10 8 9 opeq12d H=ifHSH0+H×H×HnormH=+ifHSH0×ifHSH0×ifHSH0normifHSH0
11 1 10 eqtrid H=ifHSH0W=+ifHSH0×ifHSH0×ifHSH0normifHSH0
12 11 eleq1d H=ifHSH0WNrmCVec+ifHSH0×ifHSH0×ifHSH0normifHSH0NrmCVec
13 eqid +ifHSH0×ifHSH0×ifHSH0normifHSH0=+ifHSH0×ifHSH0×ifHSH0normifHSH0
14 h0elsh 0S
15 14 elimel ifHSH0S
16 13 15 hhssnv +ifHSH0×ifHSH0×ifHSH0normifHSH0NrmCVec
17 12 16 dedth HSWNrmCVec