Metamath Proof Explorer


Theorem hial2eq

Description: Two vectors whose inner product is always equal are equal. (Contributed by NM, 16-Nov-1999) (New usage is discouraged.)

Ref Expression
Assertion hial2eq ABxAihx=BihxA=B

Proof

Step Hyp Ref Expression
1 hvsubcl ABA-B
2 oveq2 x=A-BAihx=AihA-B
3 oveq2 x=A-BBihx=BihA-B
4 2 3 eqeq12d x=A-BAihx=BihxAihA-B=BihA-B
5 4 rspcv A-BxAihx=BihxAihA-B=BihA-B
6 1 5 syl ABxAihx=BihxAihA-B=BihA-B
7 hi2eq ABAihA-B=BihA-BA=B
8 6 7 sylibd ABxAihx=BihxA=B
9 oveq1 A=BAihx=Bihx
10 9 ralrimivw A=BxAihx=Bihx
11 8 10 impbid1 ABxAihx=BihxA=B