Metamath Proof Explorer


Theorem hial2eq2

Description: Two vectors whose inner product is always equal are equal. (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)

Ref Expression
Assertion hial2eq2 A B x x ih A = x ih B A = B

Proof

Step Hyp Ref Expression
1 ax-his1 A x A ih x = x ih A
2 ax-his1 B x B ih x = x ih B
3 1 2 eqeqan12d A x B x A ih x = B ih x x ih A = x ih B
4 hicl x A x ih A
5 4 ancoms A x x ih A
6 hicl x B x ih B
7 6 ancoms B x x ih B
8 cj11 x ih A x ih B x ih A = x ih B x ih A = x ih B
9 5 7 8 syl2an A x B x x ih A = x ih B x ih A = x ih B
10 3 9 bitr2d A x B x x ih A = x ih B A ih x = B ih x
11 10 anandirs A B x x ih A = x ih B A ih x = B ih x
12 11 ralbidva A B x x ih A = x ih B x A ih x = B ih x
13 hial2eq A B x A ih x = B ih x A = B
14 12 13 bitrd A B x x ih A = x ih B A = B