Metamath Proof Explorer


Theorem hilims

Description: Hilbert space distance metric. (Contributed by NM, 13-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hilims.1 =BaseSetU
hilims.2 +=+vU
hilims.3 =𝑠OLDU
hilims.5 ih=𝑖OLDU
hilims.8 D=IndMetU
hilims.9 UNrmCVec
Assertion hilims D=norm-

Proof

Step Hyp Ref Expression
1 hilims.1 =BaseSetU
2 hilims.2 +=+vU
3 hilims.3 =𝑠OLDU
4 hilims.5 ih=𝑖OLDU
5 hilims.8 D=IndMetU
6 hilims.9 UNrmCVec
7 1 2 3 4 6 hilhhi U=+norm
8 7 5 hhims2 D=norm-