Metamath Proof Explorer


Theorem hlatcon2

Description: Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012)

Ref Expression
Hypotheses 3noncol.l ˙=K
3noncol.j ˙=joinK
3noncol.a A=AtomsK
Assertion hlatcon2 KHLPAQARAPQ¬R˙P˙Q¬P˙R˙Q

Proof

Step Hyp Ref Expression
1 3noncol.l ˙=K
2 3noncol.j ˙=joinK
3 3noncol.a A=AtomsK
4 1 2 3 hlatcon3 KHLPAQARAPQ¬R˙P˙Q¬P˙Q˙R
5 simp1 KHLPAQARAPQ¬R˙P˙QKHL
6 simp22 KHLPAQARAPQ¬R˙P˙QQA
7 simp23 KHLPAQARAPQ¬R˙P˙QRA
8 2 3 hlatjcom KHLQARAQ˙R=R˙Q
9 5 6 7 8 syl3anc KHLPAQARAPQ¬R˙P˙QQ˙R=R˙Q
10 9 breq2d KHLPAQARAPQ¬R˙P˙QP˙Q˙RP˙R˙Q
11 4 10 mtbid KHLPAQARAPQ¬R˙P˙Q¬P˙R˙Q