Metamath Proof Explorer


Theorem hlatjass

Description: Lattice join is associative. Frequently-used special case of latjass for atoms. (Contributed by NM, 27-Jul-2012)

Ref Expression
Hypotheses hlatjcom.j ˙=joinK
hlatjcom.a A=AtomsK
Assertion hlatjass KHLPAQARAP˙Q˙R=P˙Q˙R

Proof

Step Hyp Ref Expression
1 hlatjcom.j ˙=joinK
2 hlatjcom.a A=AtomsK
3 hllat KHLKLat
4 3 adantr KHLPAQARAKLat
5 simpr1 KHLPAQARAPA
6 eqid BaseK=BaseK
7 6 2 atbase PAPBaseK
8 5 7 syl KHLPAQARAPBaseK
9 simpr2 KHLPAQARAQA
10 6 2 atbase QAQBaseK
11 9 10 syl KHLPAQARAQBaseK
12 simpr3 KHLPAQARARA
13 6 2 atbase RARBaseK
14 12 13 syl KHLPAQARARBaseK
15 6 1 latjass KLatPBaseKQBaseKRBaseKP˙Q˙R=P˙Q˙R
16 4 8 11 14 15 syl13anc KHLPAQARAP˙Q˙R=P˙Q˙R