Metamath Proof Explorer


Theorem hldir

Description: Hilbert space scalar multiplication distributive law. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hldi.1 X=BaseSetU
hldi.2 G=+vU
hldi.4 S=𝑠OLDU
Assertion hldir UCHilOLDABCXA+BSC=ASCGBSC

Proof

Step Hyp Ref Expression
1 hldi.1 X=BaseSetU
2 hldi.2 G=+vU
3 hldi.4 S=𝑠OLDU
4 hlnv UCHilOLDUNrmCVec
5 1 2 3 nvdir UNrmCVecABCXA+BSC=ASCGBSC
6 4 5 sylan UCHilOLDABCXA+BSC=ASCGBSC