Metamath Proof Explorer


Theorem hlmulass

Description: Hilbert space scalar multiplication associative law. (Contributed by NM, 7-Sep-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlmulf.1 X=BaseSetU
hlmulf.4 S=𝑠OLDU
Assertion hlmulass UCHilOLDABCXABSC=ASBSC

Proof

Step Hyp Ref Expression
1 hlmulf.1 X=BaseSetU
2 hlmulf.4 S=𝑠OLDU
3 hlnv UCHilOLDUNrmCVec
4 1 2 nvsass UNrmCVecABCXABSC=ASBSC
5 3 4 sylan UCHilOLDABCXABSC=ASBSC