Metamath Proof Explorer


Theorem hlpar

Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses hlpar.1 X=BaseSetU
hlpar.2 G=+vU
hlpar.4 S=𝑠OLDU
hlpar.6 N=normCVU
Assertion hlpar UCHilOLDAXBXNAGB2+NAG-1SB2=2NA2+NB2

Proof

Step Hyp Ref Expression
1 hlpar.1 X=BaseSetU
2 hlpar.2 G=+vU
3 hlpar.4 S=𝑠OLDU
4 hlpar.6 N=normCVU
5 hlph UCHilOLDUCPreHilOLD
6 1 2 3 4 phpar UCPreHilOLDAXBXNAGB2+NAG-1SB2=2NA2+NB2
7 5 6 syl3an1 UCHilOLDAXBXNAGB2+NAG-1SB2=2NA2+NB2