Metamath Proof Explorer


Theorem hlsupr2

Description: A Hilbert lattice has the superposition property. (Contributed by NM, 25-Nov-2012)

Ref Expression
Hypotheses hlsupr2.j ˙=joinK
hlsupr2.a A=AtomsK
Assertion hlsupr2 KHLPAQArAP˙r=Q˙r

Proof

Step Hyp Ref Expression
1 hlsupr2.j ˙=joinK
2 hlsupr2.a A=AtomsK
3 eqid K=K
4 3 1 2 hlsupr KHLPAQAPQrArPrQrKP˙Q
5 4 ex KHLPAQAPQrArPrQrKP˙Q
6 simpl1 KHLPAQArAKHL
7 hlcvl KHLKCvLat
8 6 7 syl KHLPAQArAKCvLat
9 simpl2 KHLPAQArAPA
10 simpl3 KHLPAQArAQA
11 simpr KHLPAQArArA
12 2 3 1 cvlsupr3 KCvLatPAQArAP˙r=Q˙rPQrPrQrKP˙Q
13 8 9 10 11 12 syl13anc KHLPAQArAP˙r=Q˙rPQrPrQrKP˙Q
14 13 rexbidva KHLPAQArAP˙r=Q˙rrAPQrPrQrKP˙Q
15 ne0i PAA
16 15 3ad2ant2 KHLPAQAA
17 r19.37zv ArAPQrPrQrKP˙QPQrArPrQrKP˙Q
18 16 17 syl KHLPAQArAPQrPrQrKP˙QPQrArPrQrKP˙Q
19 14 18 bitrd KHLPAQArAP˙r=Q˙rPQrArPrQrKP˙Q
20 5 19 mpbird KHLPAQArAP˙r=Q˙r