Metamath Proof Explorer


Theorem hmopadj

Description: A Hermitian operator is self-adjoint. (Contributed by NM, 24-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion hmopadj THrmOpadjhT=T

Proof

Step Hyp Ref Expression
1 hmopf THrmOpT:
2 hmop THrmOpxyxihTy=Txihy
3 2 eqcomd THrmOpxyTxihy=xihTy
4 3 3expib THrmOpxyTxihy=xihTy
5 4 ralrimivv THrmOpxyTxihy=xihTy
6 adjeq T:T:xyTxihy=xihTyadjhT=T
7 1 1 5 6 syl3anc THrmOpadjhT=T