Metamath Proof Explorer


Theorem hmpher

Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion hmpher ErTop

Proof

Step Hyp Ref Expression
1 df-hmph =Homeo-1V1𝑜
2 cnvimass Homeo-1V1𝑜domHomeo
3 hmeofn HomeoFnTop×Top
4 3 fndmi domHomeo=Top×Top
5 2 4 sseqtri Homeo-1V1𝑜Top×Top
6 1 5 eqsstri Top×Top
7 relxp RelTop×Top
8 relss Top×TopRelTop×TopRel
9 6 7 8 mp2 Rel
10 hmphsym xyyx
11 hmphtr xyyzxz
12 hmphref xTopxx
13 hmphtop1 xxxTop
14 12 13 impbii xTopxx
15 9 10 11 14 iseri ErTop