Metamath Proof Explorer


Theorem ho02i

Description: A condition implying that a Hilbert space operator is identically zero. Lemma 3.2(S10) of Beran p. 95. (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)

Ref Expression
Hypothesis ho0.1 T:
Assertion ho02i xyxihTy=0T=0hop

Proof

Step Hyp Ref Expression
1 ho0.1 T:
2 ralcom xyxihTy=0yxxihTy=0
3 1 ffvelcdmi yTy
4 hial02 TyxxihTy=0Ty=0
5 hial0 TyxTyihx=0Ty=0
6 4 5 bitr4d TyxxihTy=0xTyihx=0
7 3 6 syl yxxihTy=0xTyihx=0
8 7 ralbiia yxxihTy=0yxTyihx=0
9 1 ho01i yxTyihx=0T=0hop
10 2 8 9 3bitri xyxihTy=0T=0hop