| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ho0.1 | ⊢ 𝑇 :  ℋ ⟶  ℋ | 
						
							| 2 |  | ralcom | ⊢ ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  0  ↔  ∀ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  0 ) | 
						
							| 3 | 1 | ffvelcdmi | ⊢ ( 𝑦  ∈   ℋ  →  ( 𝑇 ‘ 𝑦 )  ∈   ℋ ) | 
						
							| 4 |  | hial02 | ⊢ ( ( 𝑇 ‘ 𝑦 )  ∈   ℋ  →  ( ∀ 𝑥  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  0  ↔  ( 𝑇 ‘ 𝑦 )  =  0ℎ ) ) | 
						
							| 5 |  | hial0 | ⊢ ( ( 𝑇 ‘ 𝑦 )  ∈   ℋ  →  ( ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 )  =  0  ↔  ( 𝑇 ‘ 𝑦 )  =  0ℎ ) ) | 
						
							| 6 | 4 5 | bitr4d | ⊢ ( ( 𝑇 ‘ 𝑦 )  ∈   ℋ  →  ( ∀ 𝑥  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  0  ↔  ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 )  =  0 ) ) | 
						
							| 7 | 3 6 | syl | ⊢ ( 𝑦  ∈   ℋ  →  ( ∀ 𝑥  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  0  ↔  ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 )  =  0 ) ) | 
						
							| 8 | 7 | ralbiia | ⊢ ( ∀ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  0  ↔  ∀ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 )  =  0 ) | 
						
							| 9 | 1 | ho01i | ⊢ ( ∀ 𝑦  ∈   ℋ ∀ 𝑥  ∈   ℋ ( ( 𝑇 ‘ 𝑦 )  ·ih  𝑥 )  =  0  ↔  𝑇  =   0hop  ) | 
						
							| 10 | 2 8 9 | 3bitri | ⊢ ( ∀ 𝑥  ∈   ℋ ∀ 𝑦  ∈   ℋ ( 𝑥  ·ih  ( 𝑇 ‘ 𝑦 ) )  =  0  ↔  𝑇  =   0hop  ) |