Metamath Proof Explorer


Theorem hocsubdir

Description: Distributive law for Hilbert space operator difference. (Contributed by NM, 23-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hocsubdir R:S:T:R-opST=RT-opST

Proof

Step Hyp Ref Expression
1 oveq1 R=ifR:R0hopR-opS=ifR:R0hop-opS
2 1 coeq1d R=ifR:R0hopR-opST=ifR:R0hop-opST
3 coeq1 R=ifR:R0hopRT=ifR:R0hopT
4 3 oveq1d R=ifR:R0hopRT-opST=ifR:R0hopT-opST
5 2 4 eqeq12d R=ifR:R0hopR-opST=RT-opSTifR:R0hop-opST=ifR:R0hopT-opST
6 oveq2 S=ifS:S0hopifR:R0hop-opS=ifR:R0hop-opifS:S0hop
7 6 coeq1d S=ifS:S0hopifR:R0hop-opST=ifR:R0hop-opifS:S0hopT
8 coeq1 S=ifS:S0hopST=ifS:S0hopT
9 8 oveq2d S=ifS:S0hopifR:R0hopT-opST=ifR:R0hopT-opifS:S0hopT
10 7 9 eqeq12d S=ifS:S0hopifR:R0hop-opST=ifR:R0hopT-opSTifR:R0hop-opifS:S0hopT=ifR:R0hopT-opifS:S0hopT
11 coeq2 T=ifT:T0hopifR:R0hop-opifS:S0hopT=ifR:R0hop-opifS:S0hopifT:T0hop
12 coeq2 T=ifT:T0hopifR:R0hopT=ifR:R0hopifT:T0hop
13 coeq2 T=ifT:T0hopifS:S0hopT=ifS:S0hopifT:T0hop
14 12 13 oveq12d T=ifT:T0hopifR:R0hopT-opifS:S0hopT=ifR:R0hopifT:T0hop-opifS:S0hopifT:T0hop
15 11 14 eqeq12d T=ifT:T0hopifR:R0hop-opifS:S0hopT=ifR:R0hopT-opifS:S0hopTifR:R0hop-opifS:S0hopifT:T0hop=ifR:R0hopifT:T0hop-opifS:S0hopifT:T0hop
16 ho0f 0hop:
17 16 elimf ifR:R0hop:
18 16 elimf ifS:S0hop:
19 16 elimf ifT:T0hop:
20 17 18 19 hocsubdiri ifR:R0hop-opifS:S0hopifT:T0hop=ifR:R0hopifT:T0hop-opifS:S0hopifT:T0hop
21 5 10 15 20 dedth3h R:S:T:R-opST=RT-opST