Metamath Proof Explorer


Theorem hodcl

Description: Closure of the difference of two Hilbert space operators. (Contributed by NM, 15-Nov-2002) (New usage is discouraged.)

Ref Expression
Assertion hodcl S:T:AS-opTA

Proof

Step Hyp Ref Expression
1 hodval S:T:AS-opTA=SA-TA
2 ffvelcdm S:ASA
3 2 3adant2 S:T:ASA
4 ffvelcdm T:ATA
5 4 3adant1 S:T:ATA
6 hvsubcl SATASA-TA
7 3 5 6 syl2anc S:T:ASA-TA
8 1 7 eqeltrd S:T:AS-opTA
9 8 3expa S:T:AS-opTA