Metamath Proof Explorer


Theorem hodmval

Description: Value of the difference of two Hilbert space operators. (Contributed by NM, 9-Nov-2000) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)

Ref Expression
Assertion hodmval S:T:S-opT=xSx-Tx

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 1 1 elmap SS:
3 1 1 elmap TT:
4 fveq1 f=Sfx=Sx
5 4 oveq1d f=Sfx-gx=Sx-gx
6 5 mpteq2dv f=Sxfx-gx=xSx-gx
7 fveq1 g=Tgx=Tx
8 7 oveq2d g=TSx-gx=Sx-Tx
9 8 mpteq2dv g=TxSx-gx=xSx-Tx
10 df-hodif -op=f,gxfx-gx
11 1 mptex xSx-TxV
12 6 9 10 11 ovmpo STS-opT=xSx-Tx
13 2 3 12 syl2anbr S:T:S-opT=xSx-Tx