Metamath Proof Explorer


Theorem hoeq

Description: Equality of Hilbert space operators. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion hoeq T:U:xTx=UxT=U

Proof

Step Hyp Ref Expression
1 ffn T:TFn
2 ffn U:UFn
3 eqfnfv TFnUFnT=UxTx=Ux
4 3 bicomd TFnUFnxTx=UxT=U
5 1 2 4 syl2an T:U:xTx=UxT=U