Metamath Proof Explorer


Theorem hoidifhspf

Description: D is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of Fremlin1 p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses hoidifhspf.d D=xaXkXifk=Kifxakakxak
hoidifhspf.y φY
hoidifhspf.x φXV
hoidifhspf.a φA:X
Assertion hoidifhspf φDYA:X

Proof

Step Hyp Ref Expression
1 hoidifhspf.d D=xaXkXifk=Kifxakakxak
2 hoidifhspf.y φY
3 hoidifhspf.x φXV
4 hoidifhspf.a φA:X
5 4 ffvelcdmda φkXAk
6 2 adantr φkXY
7 5 6 ifcld φkXifYAkAkY
8 7 5 ifcld φkXifk=KifYAkAkYAk
9 8 fmpttd φkXifk=KifYAkAkYAk:X
10 1 2 3 4 hoidifhspval2 φDYA=kXifk=KifYAkAkYAk
11 10 feq1d φDYA:XkXifk=KifYAkAkYAk:X
12 9 11 mpbird φDYA:X