Metamath Proof Explorer


Theorem homfeqbas

Description: Deduce equality of base sets from equality of Hom-sets. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypothesis homfeqbas.1 φHom𝑓C=Hom𝑓D
Assertion homfeqbas φBaseC=BaseD

Proof

Step Hyp Ref Expression
1 homfeqbas.1 φHom𝑓C=Hom𝑓D
2 1 dmeqd φdomHom𝑓C=domHom𝑓D
3 eqid Hom𝑓C=Hom𝑓C
4 eqid BaseC=BaseC
5 3 4 homffn Hom𝑓CFnBaseC×BaseC
6 5 fndmi domHom𝑓C=BaseC×BaseC
7 eqid Hom𝑓D=Hom𝑓D
8 eqid BaseD=BaseD
9 7 8 homffn Hom𝑓DFnBaseD×BaseD
10 9 fndmi domHom𝑓D=BaseD×BaseD
11 2 6 10 3eqtr3g φBaseC×BaseC=BaseD×BaseD
12 11 dmeqd φdomBaseC×BaseC=domBaseD×BaseD
13 dmxpid domBaseC×BaseC=BaseC
14 dmxpid domBaseD×BaseD=BaseD
15 12 13 14 3eqtr3g φBaseC=BaseD