Metamath Proof Explorer


Theorem honegsubdi2

Description: Distribution of negative over subtraction. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion honegsubdi2 T:U:-1·opT-opU=U-opT

Proof

Step Hyp Ref Expression
1 honegsubdi T:U:-1·opT-opU=-1·opT+opU
2 neg1cn 1
3 homulcl 1T:-1·opT:
4 2 3 mpan T:-1·opT:
5 hoaddcom -1·opT:U:-1·opT+opU=U+op-1·opT
6 4 5 sylan T:U:-1·opT+opU=U+op-1·opT
7 honegsub U:T:U+op-1·opT=U-opT
8 7 ancoms T:U:U+op-1·opT=U-opT
9 1 6 8 3eqtrd T:U:-1·opT-opU=U-opT