Description: The half-plane relation is reflexive. Theorem 9.11 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hpgid.p | |
|
hpgid.i | |
||
hpgid.l | |
||
hpgid.g | |
||
hpgid.d | |
||
hpgid.a | |
||
hpgid.o | |
||
hpgid.1 | |
||
Assertion | hpgid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hpgid.p | |
|
2 | hpgid.i | |
|
3 | hpgid.l | |
|
4 | hpgid.g | |
|
5 | hpgid.d | |
|
6 | hpgid.a | |
|
7 | hpgid.o | |
|
8 | hpgid.1 | |
|
9 | simprr | |
|
10 | 9 9 | jca | |
11 | 1 2 3 4 5 6 7 8 | hpgerlem | |
12 | 10 11 | reximddv | |
13 | 1 2 3 7 4 5 6 6 | hpgbr | |
14 | 12 13 | mpbird | |