Metamath Proof Explorer


Theorem hpgid

Description: The half-plane relation is reflexive. Theorem 9.11 of Schwabhauser p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses hpgid.p P=BaseG
hpgid.i I=ItvG
hpgid.l L=Line𝒢G
hpgid.g φG𝒢Tarski
hpgid.d φDranL
hpgid.a φAP
hpgid.o O=ab|aPDbPDtDtaIb
hpgid.1 φ¬AD
Assertion hpgid φAhp𝒢GDA

Proof

Step Hyp Ref Expression
1 hpgid.p P=BaseG
2 hpgid.i I=ItvG
3 hpgid.l L=Line𝒢G
4 hpgid.g φG𝒢Tarski
5 hpgid.d φDranL
6 hpgid.a φAP
7 hpgid.o O=ab|aPDbPDtDtaIb
8 hpgid.1 φ¬AD
9 simprr φcPAOcAOc
10 9 9 jca φcPAOcAOcAOc
11 1 2 3 4 5 6 7 8 hpgerlem φcPAOc
12 10 11 reximddv φcPAOcAOc
13 1 2 3 7 4 5 6 6 hpgbr φAhp𝒢GDAcPAOcAOc
14 12 13 mpbird φAhp𝒢GDA