Metamath Proof Explorer


Theorem hsmexlem6

Description: Lemma for hsmex . (Contributed by Stefan O'Rear, 14-Feb-2015)

Ref Expression
Hypotheses hsmexlem4.x XV
hsmexlem4.h H=reczVhar𝒫X×zhar𝒫Xω
hsmexlem4.u U=xVrecyVyxω
hsmexlem4.s S=aR1On|bTCabX
hsmexlem4.o O=OrdIsoErankUdc
Assertion hsmexlem6 SV

Proof

Step Hyp Ref Expression
1 hsmexlem4.x XV
2 hsmexlem4.h H=reczVhar𝒫X×zhar𝒫Xω
3 hsmexlem4.u U=xVrecyVyxω
4 hsmexlem4.s S=aR1On|bTCabX
5 hsmexlem4.o O=OrdIsoErankUdc
6 fvex R1har𝒫ω×ranHV
7 1 2 3 4 5 hsmexlem5 dSrankdhar𝒫ω×ranH
8 4 ssrab3 SR1On
9 8 sseli dSdR1On
10 harcl har𝒫ω×ranHOn
11 r1fnon R1FnOn
12 11 fndmi domR1=On
13 10 12 eleqtrri har𝒫ω×ranHdomR1
14 rankr1ag dR1Onhar𝒫ω×ranHdomR1dR1har𝒫ω×ranHrankdhar𝒫ω×ranH
15 9 13 14 sylancl dSdR1har𝒫ω×ranHrankdhar𝒫ω×ranH
16 7 15 mpbird dSdR1har𝒫ω×ranH
17 16 ssriv SR1har𝒫ω×ranH
18 6 17 ssexi SV