Description: Lemma for hsmex . Combining the above constraints, along with itunitc and tcrank , gives an effective constraint on the rank of S . (Contributed by Stefan O'Rear, 14-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hsmexlem4.x | |
|
hsmexlem4.h | |
||
hsmexlem4.u | |
||
hsmexlem4.s | |
||
hsmexlem4.o | |
||
Assertion | hsmexlem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hsmexlem4.x | |
|
2 | hsmexlem4.h | |
|
3 | hsmexlem4.u | |
|
4 | hsmexlem4.s | |
|
5 | hsmexlem4.o | |
|
6 | 4 | ssrab3 | |
7 | 6 | sseli | |
8 | tcrank | |
|
9 | 7 8 | syl | |
10 | 3 | itunitc | |
11 | 3 | itunifn | |
12 | fniunfv | |
|
13 | 11 12 | syl | |
14 | 10 13 | eqtr4id | |
15 | 14 | imaeq2d | |
16 | imaiun | |
|
17 | 16 | a1i | |
18 | 9 15 17 | 3eqtrd | |
19 | dmresi | |
|
20 | 18 19 | eqtr4di | |
21 | rankon | |
|
22 | 18 21 | eqeltrrdi | |
23 | eloni | |
|
24 | oiid | |
|
25 | 22 23 24 | 3syl | |
26 | 25 | dmeqd | |
27 | 20 26 | eqtr4d | |
28 | omex | |
|
29 | wdomref | |
|
30 | 28 29 | mp1i | |
31 | frfnom | |
|
32 | 2 | fneq1i | |
33 | 31 32 | mpbir | |
34 | fniunfv | |
|
35 | 33 34 | ax-mp | |
36 | iunon | |
|
37 | 28 36 | mpan | |
38 | 2 | hsmexlem9 | |
39 | 37 38 | mprg | |
40 | 35 39 | eqeltrri | |
41 | 40 | a1i | |
42 | fvssunirn | |
|
43 | eqid | |
|
44 | 1 2 3 4 43 | hsmexlem4 | |
45 | 44 | ancoms | |
46 | 42 45 | sselid | |
47 | imassrn | |
|
48 | rankf | |
|
49 | frn | |
|
50 | 48 49 | ax-mp | |
51 | 47 50 | sstri | |
52 | ffun | |
|
53 | fvex | |
|
54 | 53 | funimaex | |
55 | 48 52 54 | mp2b | |
56 | 55 | elpw | |
57 | 51 56 | mpbir | |
58 | 46 57 | jctil | |
59 | 58 | ralrimiva | |
60 | eqid | |
|
61 | 43 60 | hsmexlem3 | |
62 | 30 41 59 61 | syl21anc | |
63 | 27 62 | eqeltrd | |