Metamath Proof Explorer


Theorem hsmexlem5

Description: Lemma for hsmex . Combining the above constraints, along with itunitc and tcrank , gives an effective constraint on the rank of S . (Contributed by Stefan O'Rear, 14-Feb-2015)

Ref Expression
Hypotheses hsmexlem4.x XV
hsmexlem4.h H=reczVhar𝒫X×zhar𝒫Xω
hsmexlem4.u U=xVrecyVyxω
hsmexlem4.s S=aR1On|bTCabX
hsmexlem4.o O=OrdIsoErankUdc
Assertion hsmexlem5 dSrankdhar𝒫ω×ranH

Proof

Step Hyp Ref Expression
1 hsmexlem4.x XV
2 hsmexlem4.h H=reczVhar𝒫X×zhar𝒫Xω
3 hsmexlem4.u U=xVrecyVyxω
4 hsmexlem4.s S=aR1On|bTCabX
5 hsmexlem4.o O=OrdIsoErankUdc
6 4 ssrab3 SR1On
7 6 sseli dSdR1On
8 tcrank dR1Onrankd=rankTCd
9 7 8 syl dSrankd=rankTCd
10 3 itunitc TCd=ranUd
11 3 itunifn dSUdFnω
12 fniunfv UdFnωcωUdc=ranUd
13 11 12 syl dScωUdc=ranUd
14 10 13 eqtr4id dSTCd=cωUdc
15 14 imaeq2d dSrankTCd=rankcωUdc
16 imaiun rankcωUdc=cωrankUdc
17 16 a1i dSrankcωUdc=cωrankUdc
18 9 15 17 3eqtrd dSrankd=cωrankUdc
19 dmresi domIcωrankUdc=cωrankUdc
20 18 19 eqtr4di dSrankd=domIcωrankUdc
21 rankon rankdOn
22 18 21 eqeltrrdi dScωrankUdcOn
23 eloni cωrankUdcOnOrdcωrankUdc
24 oiid OrdcωrankUdcOrdIsoEcωrankUdc=IcωrankUdc
25 22 23 24 3syl dSOrdIsoEcωrankUdc=IcωrankUdc
26 25 dmeqd dSdomOrdIsoEcωrankUdc=domIcωrankUdc
27 20 26 eqtr4d dSrankd=domOrdIsoEcωrankUdc
28 omex ωV
29 wdomref ωVω*ω
30 28 29 mp1i dSω*ω
31 frfnom reczVhar𝒫X×zhar𝒫XωFnω
32 2 fneq1i HFnωreczVhar𝒫X×zhar𝒫XωFnω
33 31 32 mpbir HFnω
34 fniunfv HFnωaωHa=ranH
35 33 34 ax-mp aωHa=ranH
36 iunon ωVaωHaOnaωHaOn
37 28 36 mpan aωHaOnaωHaOn
38 2 hsmexlem9 aωHaOn
39 37 38 mprg aωHaOn
40 35 39 eqeltrri ranHOn
41 40 a1i dSranHOn
42 fvssunirn HcranH
43 eqid OrdIsoErankUdc=OrdIsoErankUdc
44 1 2 3 4 43 hsmexlem4 cωdSdomOrdIsoErankUdcHc
45 44 ancoms dScωdomOrdIsoErankUdcHc
46 42 45 sselid dScωdomOrdIsoErankUdcranH
47 imassrn rankUdcranrank
48 rankf rank:R1OnOn
49 frn rank:R1OnOnranrankOn
50 48 49 ax-mp ranrankOn
51 47 50 sstri rankUdcOn
52 ffun rank:R1OnOnFunrank
53 fvex UdcV
54 53 funimaex FunrankrankUdcV
55 48 52 54 mp2b rankUdcV
56 55 elpw rankUdc𝒫OnrankUdcOn
57 51 56 mpbir rankUdc𝒫On
58 46 57 jctil dScωrankUdc𝒫OndomOrdIsoErankUdcranH
59 58 ralrimiva dScωrankUdc𝒫OndomOrdIsoErankUdcranH
60 eqid OrdIsoEcωrankUdc=OrdIsoEcωrankUdc
61 43 60 hsmexlem3 ω*ωranHOncωrankUdc𝒫OndomOrdIsoErankUdcranHdomOrdIsoEcωrankUdchar𝒫ω×ranH
62 30 41 59 61 syl21anc dSdomOrdIsoEcωrankUdchar𝒫ω×ranH
63 27 62 eqeltrd dSrankdhar𝒫ω×ranH