| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hsmexlem4.x |
|- X e. _V |
| 2 |
|
hsmexlem4.h |
|- H = ( rec ( ( z e. _V |-> ( har ` ~P ( X X. z ) ) ) , ( har ` ~P X ) ) |` _om ) |
| 3 |
|
hsmexlem4.u |
|- U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) ) |
| 4 |
|
hsmexlem4.s |
|- S = { a e. U. ( R1 " On ) | A. b e. ( TC ` { a } ) b ~<_ X } |
| 5 |
|
hsmexlem4.o |
|- O = OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) |
| 6 |
4
|
ssrab3 |
|- S C_ U. ( R1 " On ) |
| 7 |
6
|
sseli |
|- ( d e. S -> d e. U. ( R1 " On ) ) |
| 8 |
|
tcrank |
|- ( d e. U. ( R1 " On ) -> ( rank ` d ) = ( rank " ( TC ` d ) ) ) |
| 9 |
7 8
|
syl |
|- ( d e. S -> ( rank ` d ) = ( rank " ( TC ` d ) ) ) |
| 10 |
3
|
itunitc |
|- ( TC ` d ) = U. ran ( U ` d ) |
| 11 |
3
|
itunifn |
|- ( d e. S -> ( U ` d ) Fn _om ) |
| 12 |
|
fniunfv |
|- ( ( U ` d ) Fn _om -> U_ c e. _om ( ( U ` d ) ` c ) = U. ran ( U ` d ) ) |
| 13 |
11 12
|
syl |
|- ( d e. S -> U_ c e. _om ( ( U ` d ) ` c ) = U. ran ( U ` d ) ) |
| 14 |
10 13
|
eqtr4id |
|- ( d e. S -> ( TC ` d ) = U_ c e. _om ( ( U ` d ) ` c ) ) |
| 15 |
14
|
imaeq2d |
|- ( d e. S -> ( rank " ( TC ` d ) ) = ( rank " U_ c e. _om ( ( U ` d ) ` c ) ) ) |
| 16 |
|
imaiun |
|- ( rank " U_ c e. _om ( ( U ` d ) ` c ) ) = U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) |
| 17 |
16
|
a1i |
|- ( d e. S -> ( rank " U_ c e. _om ( ( U ` d ) ` c ) ) = U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) |
| 18 |
9 15 17
|
3eqtrd |
|- ( d e. S -> ( rank ` d ) = U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) |
| 19 |
|
dmresi |
|- dom ( _I |` U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) = U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) |
| 20 |
18 19
|
eqtr4di |
|- ( d e. S -> ( rank ` d ) = dom ( _I |` U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) ) |
| 21 |
|
rankon |
|- ( rank ` d ) e. On |
| 22 |
18 21
|
eqeltrrdi |
|- ( d e. S -> U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) e. On ) |
| 23 |
|
eloni |
|- ( U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) e. On -> Ord U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) |
| 24 |
|
oiid |
|- ( Ord U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) -> OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) = ( _I |` U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) ) |
| 25 |
22 23 24
|
3syl |
|- ( d e. S -> OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) = ( _I |` U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) ) |
| 26 |
25
|
dmeqd |
|- ( d e. S -> dom OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) = dom ( _I |` U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) ) |
| 27 |
20 26
|
eqtr4d |
|- ( d e. S -> ( rank ` d ) = dom OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) ) |
| 28 |
|
omex |
|- _om e. _V |
| 29 |
|
wdomref |
|- ( _om e. _V -> _om ~<_* _om ) |
| 30 |
28 29
|
mp1i |
|- ( d e. S -> _om ~<_* _om ) |
| 31 |
|
frfnom |
|- ( rec ( ( z e. _V |-> ( har ` ~P ( X X. z ) ) ) , ( har ` ~P X ) ) |` _om ) Fn _om |
| 32 |
2
|
fneq1i |
|- ( H Fn _om <-> ( rec ( ( z e. _V |-> ( har ` ~P ( X X. z ) ) ) , ( har ` ~P X ) ) |` _om ) Fn _om ) |
| 33 |
31 32
|
mpbir |
|- H Fn _om |
| 34 |
|
fniunfv |
|- ( H Fn _om -> U_ a e. _om ( H ` a ) = U. ran H ) |
| 35 |
33 34
|
ax-mp |
|- U_ a e. _om ( H ` a ) = U. ran H |
| 36 |
|
iunon |
|- ( ( _om e. _V /\ A. a e. _om ( H ` a ) e. On ) -> U_ a e. _om ( H ` a ) e. On ) |
| 37 |
28 36
|
mpan |
|- ( A. a e. _om ( H ` a ) e. On -> U_ a e. _om ( H ` a ) e. On ) |
| 38 |
2
|
hsmexlem9 |
|- ( a e. _om -> ( H ` a ) e. On ) |
| 39 |
37 38
|
mprg |
|- U_ a e. _om ( H ` a ) e. On |
| 40 |
35 39
|
eqeltrri |
|- U. ran H e. On |
| 41 |
40
|
a1i |
|- ( d e. S -> U. ran H e. On ) |
| 42 |
|
fvssunirn |
|- ( H ` c ) C_ U. ran H |
| 43 |
|
eqid |
|- OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) |
| 44 |
1 2 3 4 43
|
hsmexlem4 |
|- ( ( c e. _om /\ d e. S ) -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) e. ( H ` c ) ) |
| 45 |
44
|
ancoms |
|- ( ( d e. S /\ c e. _om ) -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) e. ( H ` c ) ) |
| 46 |
42 45
|
sselid |
|- ( ( d e. S /\ c e. _om ) -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) e. U. ran H ) |
| 47 |
|
imassrn |
|- ( rank " ( ( U ` d ) ` c ) ) C_ ran rank |
| 48 |
|
rankf |
|- rank : U. ( R1 " On ) --> On |
| 49 |
|
frn |
|- ( rank : U. ( R1 " On ) --> On -> ran rank C_ On ) |
| 50 |
48 49
|
ax-mp |
|- ran rank C_ On |
| 51 |
47 50
|
sstri |
|- ( rank " ( ( U ` d ) ` c ) ) C_ On |
| 52 |
|
ffun |
|- ( rank : U. ( R1 " On ) --> On -> Fun rank ) |
| 53 |
|
fvex |
|- ( ( U ` d ) ` c ) e. _V |
| 54 |
53
|
funimaex |
|- ( Fun rank -> ( rank " ( ( U ` d ) ` c ) ) e. _V ) |
| 55 |
48 52 54
|
mp2b |
|- ( rank " ( ( U ` d ) ` c ) ) e. _V |
| 56 |
55
|
elpw |
|- ( ( rank " ( ( U ` d ) ` c ) ) e. ~P On <-> ( rank " ( ( U ` d ) ` c ) ) C_ On ) |
| 57 |
51 56
|
mpbir |
|- ( rank " ( ( U ` d ) ` c ) ) e. ~P On |
| 58 |
46 57
|
jctil |
|- ( ( d e. S /\ c e. _om ) -> ( ( rank " ( ( U ` d ) ` c ) ) e. ~P On /\ dom OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) e. U. ran H ) ) |
| 59 |
58
|
ralrimiva |
|- ( d e. S -> A. c e. _om ( ( rank " ( ( U ` d ) ` c ) ) e. ~P On /\ dom OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) e. U. ran H ) ) |
| 60 |
|
eqid |
|- OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) |
| 61 |
43 60
|
hsmexlem3 |
|- ( ( ( _om ~<_* _om /\ U. ran H e. On ) /\ A. c e. _om ( ( rank " ( ( U ` d ) ` c ) ) e. ~P On /\ dom OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) e. U. ran H ) ) -> dom OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) e. ( har ` ~P ( _om X. U. ran H ) ) ) |
| 62 |
30 41 59 61
|
syl21anc |
|- ( d e. S -> dom OrdIso ( _E , U_ c e. _om ( rank " ( ( U ` d ) ` c ) ) ) e. ( har ` ~P ( _om X. U. ran H ) ) ) |
| 63 |
27 62
|
eqeltrd |
|- ( d e. S -> ( rank ` d ) e. ( har ` ~P ( _om X. U. ran H ) ) ) |