| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankwflemb |
|- ( A e. U. ( R1 " On ) <-> E. y e. On A e. ( R1 ` suc y ) ) |
| 2 |
|
onsuc |
|- ( y e. On -> suc y e. On ) |
| 3 |
|
fveq2 |
|- ( x = y -> ( R1 ` x ) = ( R1 ` y ) ) |
| 4 |
3
|
raleqdv |
|- ( x = y -> ( A. z e. ( R1 ` x ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) <-> A. z e. ( R1 ` y ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) ) ) |
| 5 |
|
fveq2 |
|- ( z = u -> ( rank ` z ) = ( rank ` u ) ) |
| 6 |
|
fveq2 |
|- ( z = u -> ( TC ` z ) = ( TC ` u ) ) |
| 7 |
6
|
imaeq2d |
|- ( z = u -> ( rank " ( TC ` z ) ) = ( rank " ( TC ` u ) ) ) |
| 8 |
5 7
|
sseq12d |
|- ( z = u -> ( ( rank ` z ) C_ ( rank " ( TC ` z ) ) <-> ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
| 9 |
8
|
cbvralvw |
|- ( A. z e. ( R1 ` y ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) <-> A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) |
| 10 |
4 9
|
bitrdi |
|- ( x = y -> ( A. z e. ( R1 ` x ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) <-> A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
| 11 |
|
fveq2 |
|- ( x = suc y -> ( R1 ` x ) = ( R1 ` suc y ) ) |
| 12 |
11
|
raleqdv |
|- ( x = suc y -> ( A. z e. ( R1 ` x ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) <-> A. z e. ( R1 ` suc y ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) ) ) |
| 13 |
|
simpr |
|- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) -> ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) |
| 14 |
|
simprl |
|- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) -> z e. ( R1 ` x ) ) |
| 15 |
|
simplr |
|- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) -> A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) |
| 16 |
|
rankr1ai |
|- ( z e. ( R1 ` x ) -> ( rank ` z ) e. x ) |
| 17 |
|
fveq2 |
|- ( y = ( rank ` z ) -> ( R1 ` y ) = ( R1 ` ( rank ` z ) ) ) |
| 18 |
17
|
raleqdv |
|- ( y = ( rank ` z ) -> ( A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) <-> A. u e. ( R1 ` ( rank ` z ) ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
| 19 |
18
|
rspcv |
|- ( ( rank ` z ) e. x -> ( A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) -> A. u e. ( R1 ` ( rank ` z ) ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
| 20 |
16 19
|
syl |
|- ( z e. ( R1 ` x ) -> ( A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) -> A. u e. ( R1 ` ( rank ` z ) ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
| 21 |
|
r1elwf |
|- ( z e. ( R1 ` x ) -> z e. U. ( R1 " On ) ) |
| 22 |
|
r1rankidb |
|- ( z e. U. ( R1 " On ) -> z C_ ( R1 ` ( rank ` z ) ) ) |
| 23 |
|
ssralv |
|- ( z C_ ( R1 ` ( rank ` z ) ) -> ( A. u e. ( R1 ` ( rank ` z ) ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) -> A. u e. z ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
| 24 |
21 22 23
|
3syl |
|- ( z e. ( R1 ` x ) -> ( A. u e. ( R1 ` ( rank ` z ) ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) -> A. u e. z ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
| 25 |
20 24
|
syld |
|- ( z e. ( R1 ` x ) -> ( A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) -> A. u e. z ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) ) |
| 26 |
14 15 25
|
sylc |
|- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) -> A. u e. z ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) |
| 27 |
|
rankval3b |
|- ( z e. U. ( R1 " On ) -> ( rank ` z ) = |^| { x e. On | A. u e. z ( rank ` u ) e. x } ) |
| 28 |
27
|
eleq2d |
|- ( z e. U. ( R1 " On ) -> ( w e. ( rank ` z ) <-> w e. |^| { x e. On | A. u e. z ( rank ` u ) e. x } ) ) |
| 29 |
28
|
biimpd |
|- ( z e. U. ( R1 " On ) -> ( w e. ( rank ` z ) -> w e. |^| { x e. On | A. u e. z ( rank ` u ) e. x } ) ) |
| 30 |
|
rankon |
|- ( rank ` z ) e. On |
| 31 |
30
|
oneli |
|- ( w e. ( rank ` z ) -> w e. On ) |
| 32 |
|
eleq2w |
|- ( x = w -> ( ( rank ` u ) e. x <-> ( rank ` u ) e. w ) ) |
| 33 |
32
|
ralbidv |
|- ( x = w -> ( A. u e. z ( rank ` u ) e. x <-> A. u e. z ( rank ` u ) e. w ) ) |
| 34 |
33
|
onnminsb |
|- ( w e. On -> ( w e. |^| { x e. On | A. u e. z ( rank ` u ) e. x } -> -. A. u e. z ( rank ` u ) e. w ) ) |
| 35 |
31 34
|
syl |
|- ( w e. ( rank ` z ) -> ( w e. |^| { x e. On | A. u e. z ( rank ` u ) e. x } -> -. A. u e. z ( rank ` u ) e. w ) ) |
| 36 |
29 35
|
sylcom |
|- ( z e. U. ( R1 " On ) -> ( w e. ( rank ` z ) -> -. A. u e. z ( rank ` u ) e. w ) ) |
| 37 |
21 36
|
syl |
|- ( z e. ( R1 ` x ) -> ( w e. ( rank ` z ) -> -. A. u e. z ( rank ` u ) e. w ) ) |
| 38 |
37
|
imp |
|- ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) -> -. A. u e. z ( rank ` u ) e. w ) |
| 39 |
|
rexnal |
|- ( E. u e. z -. ( rank ` u ) e. w <-> -. A. u e. z ( rank ` u ) e. w ) |
| 40 |
38 39
|
sylibr |
|- ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) -> E. u e. z -. ( rank ` u ) e. w ) |
| 41 |
40
|
adantl |
|- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) -> E. u e. z -. ( rank ` u ) e. w ) |
| 42 |
|
r19.29 |
|- ( ( A. u e. z ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ E. u e. z -. ( rank ` u ) e. w ) -> E. u e. z ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) |
| 43 |
26 41 42
|
syl2anc |
|- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) -> E. u e. z ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) |
| 44 |
|
simp2 |
|- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> u e. z ) |
| 45 |
|
tcid |
|- ( z e. _V -> z C_ ( TC ` z ) ) |
| 46 |
45
|
elv |
|- z C_ ( TC ` z ) |
| 47 |
46
|
sseli |
|- ( u e. z -> u e. ( TC ` z ) ) |
| 48 |
|
fveqeq2 |
|- ( x = u -> ( ( rank ` x ) = w <-> ( rank ` u ) = w ) ) |
| 49 |
48
|
rspcev |
|- ( ( u e. ( TC ` z ) /\ ( rank ` u ) = w ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) |
| 50 |
49
|
ex |
|- ( u e. ( TC ` z ) -> ( ( rank ` u ) = w -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 51 |
44 47 50
|
3syl |
|- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> ( ( rank ` u ) = w -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 52 |
|
simp3l |
|- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) |
| 53 |
52
|
sseld |
|- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> ( w e. ( rank ` u ) -> w e. ( rank " ( TC ` u ) ) ) ) |
| 54 |
|
simp1l |
|- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> z e. ( R1 ` x ) ) |
| 55 |
|
rankf |
|- rank : U. ( R1 " On ) --> On |
| 56 |
|
ffn |
|- ( rank : U. ( R1 " On ) --> On -> rank Fn U. ( R1 " On ) ) |
| 57 |
55 56
|
ax-mp |
|- rank Fn U. ( R1 " On ) |
| 58 |
|
r1tr |
|- Tr ( R1 ` x ) |
| 59 |
|
trel |
|- ( Tr ( R1 ` x ) -> ( ( u e. z /\ z e. ( R1 ` x ) ) -> u e. ( R1 ` x ) ) ) |
| 60 |
58 59
|
ax-mp |
|- ( ( u e. z /\ z e. ( R1 ` x ) ) -> u e. ( R1 ` x ) ) |
| 61 |
|
r1elwf |
|- ( u e. ( R1 ` x ) -> u e. U. ( R1 " On ) ) |
| 62 |
|
tcwf |
|- ( u e. U. ( R1 " On ) -> ( TC ` u ) e. U. ( R1 " On ) ) |
| 63 |
|
fvex |
|- ( TC ` u ) e. _V |
| 64 |
63
|
r1elss |
|- ( ( TC ` u ) e. U. ( R1 " On ) <-> ( TC ` u ) C_ U. ( R1 " On ) ) |
| 65 |
62 64
|
sylib |
|- ( u e. U. ( R1 " On ) -> ( TC ` u ) C_ U. ( R1 " On ) ) |
| 66 |
60 61 65
|
3syl |
|- ( ( u e. z /\ z e. ( R1 ` x ) ) -> ( TC ` u ) C_ U. ( R1 " On ) ) |
| 67 |
|
fvelimab |
|- ( ( rank Fn U. ( R1 " On ) /\ ( TC ` u ) C_ U. ( R1 " On ) ) -> ( w e. ( rank " ( TC ` u ) ) <-> E. x e. ( TC ` u ) ( rank ` x ) = w ) ) |
| 68 |
57 66 67
|
sylancr |
|- ( ( u e. z /\ z e. ( R1 ` x ) ) -> ( w e. ( rank " ( TC ` u ) ) <-> E. x e. ( TC ` u ) ( rank ` x ) = w ) ) |
| 69 |
|
vex |
|- z e. _V |
| 70 |
69
|
tcel |
|- ( u e. z -> ( TC ` u ) C_ ( TC ` z ) ) |
| 71 |
|
ssrexv |
|- ( ( TC ` u ) C_ ( TC ` z ) -> ( E. x e. ( TC ` u ) ( rank ` x ) = w -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 72 |
70 71
|
syl |
|- ( u e. z -> ( E. x e. ( TC ` u ) ( rank ` x ) = w -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 73 |
72
|
adantr |
|- ( ( u e. z /\ z e. ( R1 ` x ) ) -> ( E. x e. ( TC ` u ) ( rank ` x ) = w -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 74 |
68 73
|
sylbid |
|- ( ( u e. z /\ z e. ( R1 ` x ) ) -> ( w e. ( rank " ( TC ` u ) ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 75 |
44 54 74
|
syl2anc |
|- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> ( w e. ( rank " ( TC ` u ) ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 76 |
53 75
|
syld |
|- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> ( w e. ( rank ` u ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 77 |
|
rankon |
|- ( rank ` u ) e. On |
| 78 |
|
eloni |
|- ( ( rank ` u ) e. On -> Ord ( rank ` u ) ) |
| 79 |
|
eloni |
|- ( w e. On -> Ord w ) |
| 80 |
|
ordtri3or |
|- ( ( Ord ( rank ` u ) /\ Ord w ) -> ( ( rank ` u ) e. w \/ ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) |
| 81 |
78 79 80
|
syl2an |
|- ( ( ( rank ` u ) e. On /\ w e. On ) -> ( ( rank ` u ) e. w \/ ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) |
| 82 |
77 31 81
|
sylancr |
|- ( w e. ( rank ` z ) -> ( ( rank ` u ) e. w \/ ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) |
| 83 |
|
3orass |
|- ( ( ( rank ` u ) e. w \/ ( rank ` u ) = w \/ w e. ( rank ` u ) ) <-> ( ( rank ` u ) e. w \/ ( ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) ) |
| 84 |
82 83
|
sylib |
|- ( w e. ( rank ` z ) -> ( ( rank ` u ) e. w \/ ( ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) ) |
| 85 |
84
|
orcanai |
|- ( ( w e. ( rank ` z ) /\ -. ( rank ` u ) e. w ) -> ( ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) |
| 86 |
85
|
ad2ant2l |
|- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> ( ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) |
| 87 |
86
|
3adant2 |
|- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> ( ( rank ` u ) = w \/ w e. ( rank ` u ) ) ) |
| 88 |
51 76 87
|
mpjaod |
|- ( ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) /\ u e. z /\ ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) |
| 89 |
88
|
rexlimdv3a |
|- ( ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) -> ( E. u e. z ( ( rank ` u ) C_ ( rank " ( TC ` u ) ) /\ -. ( rank ` u ) e. w ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 90 |
13 43 89
|
sylc |
|- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ ( z e. ( R1 ` x ) /\ w e. ( rank ` z ) ) ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) |
| 91 |
90
|
expr |
|- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ z e. ( R1 ` x ) ) -> ( w e. ( rank ` z ) -> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 92 |
|
tcwf |
|- ( z e. U. ( R1 " On ) -> ( TC ` z ) e. U. ( R1 " On ) ) |
| 93 |
|
r1elssi |
|- ( ( TC ` z ) e. U. ( R1 " On ) -> ( TC ` z ) C_ U. ( R1 " On ) ) |
| 94 |
|
fvelimab |
|- ( ( rank Fn U. ( R1 " On ) /\ ( TC ` z ) C_ U. ( R1 " On ) ) -> ( w e. ( rank " ( TC ` z ) ) <-> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 95 |
93 94
|
sylan2 |
|- ( ( rank Fn U. ( R1 " On ) /\ ( TC ` z ) e. U. ( R1 " On ) ) -> ( w e. ( rank " ( TC ` z ) ) <-> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 96 |
57 92 95
|
sylancr |
|- ( z e. U. ( R1 " On ) -> ( w e. ( rank " ( TC ` z ) ) <-> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 97 |
21 96
|
syl |
|- ( z e. ( R1 ` x ) -> ( w e. ( rank " ( TC ` z ) ) <-> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 98 |
97
|
adantl |
|- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ z e. ( R1 ` x ) ) -> ( w e. ( rank " ( TC ` z ) ) <-> E. x e. ( TC ` z ) ( rank ` x ) = w ) ) |
| 99 |
91 98
|
sylibrd |
|- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ z e. ( R1 ` x ) ) -> ( w e. ( rank ` z ) -> w e. ( rank " ( TC ` z ) ) ) ) |
| 100 |
99
|
ssrdv |
|- ( ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) /\ z e. ( R1 ` x ) ) -> ( rank ` z ) C_ ( rank " ( TC ` z ) ) ) |
| 101 |
100
|
ralrimiva |
|- ( ( x e. On /\ A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) ) -> A. z e. ( R1 ` x ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) ) |
| 102 |
101
|
ex |
|- ( x e. On -> ( A. y e. x A. u e. ( R1 ` y ) ( rank ` u ) C_ ( rank " ( TC ` u ) ) -> A. z e. ( R1 ` x ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) ) ) |
| 103 |
10 12 102
|
tfis3 |
|- ( suc y e. On -> A. z e. ( R1 ` suc y ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) ) |
| 104 |
|
fveq2 |
|- ( z = A -> ( rank ` z ) = ( rank ` A ) ) |
| 105 |
|
fveq2 |
|- ( z = A -> ( TC ` z ) = ( TC ` A ) ) |
| 106 |
105
|
imaeq2d |
|- ( z = A -> ( rank " ( TC ` z ) ) = ( rank " ( TC ` A ) ) ) |
| 107 |
104 106
|
sseq12d |
|- ( z = A -> ( ( rank ` z ) C_ ( rank " ( TC ` z ) ) <-> ( rank ` A ) C_ ( rank " ( TC ` A ) ) ) ) |
| 108 |
107
|
rspccv |
|- ( A. z e. ( R1 ` suc y ) ( rank ` z ) C_ ( rank " ( TC ` z ) ) -> ( A e. ( R1 ` suc y ) -> ( rank ` A ) C_ ( rank " ( TC ` A ) ) ) ) |
| 109 |
2 103 108
|
3syl |
|- ( y e. On -> ( A e. ( R1 ` suc y ) -> ( rank ` A ) C_ ( rank " ( TC ` A ) ) ) ) |
| 110 |
109
|
rexlimiv |
|- ( E. y e. On A e. ( R1 ` suc y ) -> ( rank ` A ) C_ ( rank " ( TC ` A ) ) ) |
| 111 |
1 110
|
sylbi |
|- ( A e. U. ( R1 " On ) -> ( rank ` A ) C_ ( rank " ( TC ` A ) ) ) |
| 112 |
|
tcvalg |
|- ( A e. U. ( R1 " On ) -> ( TC ` A ) = |^| { x | ( A C_ x /\ Tr x ) } ) |
| 113 |
|
r1rankidb |
|- ( A e. U. ( R1 " On ) -> A C_ ( R1 ` ( rank ` A ) ) ) |
| 114 |
|
r1tr |
|- Tr ( R1 ` ( rank ` A ) ) |
| 115 |
|
fvex |
|- ( R1 ` ( rank ` A ) ) e. _V |
| 116 |
|
sseq2 |
|- ( x = ( R1 ` ( rank ` A ) ) -> ( A C_ x <-> A C_ ( R1 ` ( rank ` A ) ) ) ) |
| 117 |
|
treq |
|- ( x = ( R1 ` ( rank ` A ) ) -> ( Tr x <-> Tr ( R1 ` ( rank ` A ) ) ) ) |
| 118 |
116 117
|
anbi12d |
|- ( x = ( R1 ` ( rank ` A ) ) -> ( ( A C_ x /\ Tr x ) <-> ( A C_ ( R1 ` ( rank ` A ) ) /\ Tr ( R1 ` ( rank ` A ) ) ) ) ) |
| 119 |
115 118
|
elab |
|- ( ( R1 ` ( rank ` A ) ) e. { x | ( A C_ x /\ Tr x ) } <-> ( A C_ ( R1 ` ( rank ` A ) ) /\ Tr ( R1 ` ( rank ` A ) ) ) ) |
| 120 |
|
intss1 |
|- ( ( R1 ` ( rank ` A ) ) e. { x | ( A C_ x /\ Tr x ) } -> |^| { x | ( A C_ x /\ Tr x ) } C_ ( R1 ` ( rank ` A ) ) ) |
| 121 |
119 120
|
sylbir |
|- ( ( A C_ ( R1 ` ( rank ` A ) ) /\ Tr ( R1 ` ( rank ` A ) ) ) -> |^| { x | ( A C_ x /\ Tr x ) } C_ ( R1 ` ( rank ` A ) ) ) |
| 122 |
113 114 121
|
sylancl |
|- ( A e. U. ( R1 " On ) -> |^| { x | ( A C_ x /\ Tr x ) } C_ ( R1 ` ( rank ` A ) ) ) |
| 123 |
112 122
|
eqsstrd |
|- ( A e. U. ( R1 " On ) -> ( TC ` A ) C_ ( R1 ` ( rank ` A ) ) ) |
| 124 |
|
imass2 |
|- ( ( TC ` A ) C_ ( R1 ` ( rank ` A ) ) -> ( rank " ( TC ` A ) ) C_ ( rank " ( R1 ` ( rank ` A ) ) ) ) |
| 125 |
|
ffun |
|- ( rank : U. ( R1 " On ) --> On -> Fun rank ) |
| 126 |
55 125
|
ax-mp |
|- Fun rank |
| 127 |
|
fvelima |
|- ( ( Fun rank /\ x e. ( rank " ( R1 ` ( rank ` A ) ) ) ) -> E. y e. ( R1 ` ( rank ` A ) ) ( rank ` y ) = x ) |
| 128 |
126 127
|
mpan |
|- ( x e. ( rank " ( R1 ` ( rank ` A ) ) ) -> E. y e. ( R1 ` ( rank ` A ) ) ( rank ` y ) = x ) |
| 129 |
|
rankr1ai |
|- ( y e. ( R1 ` ( rank ` A ) ) -> ( rank ` y ) e. ( rank ` A ) ) |
| 130 |
|
eleq1 |
|- ( ( rank ` y ) = x -> ( ( rank ` y ) e. ( rank ` A ) <-> x e. ( rank ` A ) ) ) |
| 131 |
129 130
|
syl5ibcom |
|- ( y e. ( R1 ` ( rank ` A ) ) -> ( ( rank ` y ) = x -> x e. ( rank ` A ) ) ) |
| 132 |
131
|
rexlimiv |
|- ( E. y e. ( R1 ` ( rank ` A ) ) ( rank ` y ) = x -> x e. ( rank ` A ) ) |
| 133 |
128 132
|
syl |
|- ( x e. ( rank " ( R1 ` ( rank ` A ) ) ) -> x e. ( rank ` A ) ) |
| 134 |
133
|
ssriv |
|- ( rank " ( R1 ` ( rank ` A ) ) ) C_ ( rank ` A ) |
| 135 |
124 134
|
sstrdi |
|- ( ( TC ` A ) C_ ( R1 ` ( rank ` A ) ) -> ( rank " ( TC ` A ) ) C_ ( rank ` A ) ) |
| 136 |
123 135
|
syl |
|- ( A e. U. ( R1 " On ) -> ( rank " ( TC ` A ) ) C_ ( rank ` A ) ) |
| 137 |
111 136
|
eqssd |
|- ( A e. U. ( R1 " On ) -> ( rank ` A ) = ( rank " ( TC ` A ) ) ) |