Step |
Hyp |
Ref |
Expression |
1 |
|
hsmexlem4.x |
⊢ 𝑋 ∈ V |
2 |
|
hsmexlem4.h |
⊢ 𝐻 = ( rec ( ( 𝑧 ∈ V ↦ ( har ‘ 𝒫 ( 𝑋 × 𝑧 ) ) ) , ( har ‘ 𝒫 𝑋 ) ) ↾ ω ) |
3 |
|
hsmexlem4.u |
⊢ 𝑈 = ( 𝑥 ∈ V ↦ ( rec ( ( 𝑦 ∈ V ↦ ∪ 𝑦 ) , 𝑥 ) ↾ ω ) ) |
4 |
|
hsmexlem4.s |
⊢ 𝑆 = { 𝑎 ∈ ∪ ( 𝑅1 “ On ) ∣ ∀ 𝑏 ∈ ( TC ‘ { 𝑎 } ) 𝑏 ≼ 𝑋 } |
5 |
|
hsmexlem4.o |
⊢ 𝑂 = OrdIso ( E , ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) |
6 |
4
|
ssrab3 |
⊢ 𝑆 ⊆ ∪ ( 𝑅1 “ On ) |
7 |
6
|
sseli |
⊢ ( 𝑑 ∈ 𝑆 → 𝑑 ∈ ∪ ( 𝑅1 “ On ) ) |
8 |
|
tcrank |
⊢ ( 𝑑 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝑑 ) = ( rank “ ( TC ‘ 𝑑 ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑑 ∈ 𝑆 → ( rank ‘ 𝑑 ) = ( rank “ ( TC ‘ 𝑑 ) ) ) |
10 |
3
|
itunitc |
⊢ ( TC ‘ 𝑑 ) = ∪ ran ( 𝑈 ‘ 𝑑 ) |
11 |
3
|
itunifn |
⊢ ( 𝑑 ∈ 𝑆 → ( 𝑈 ‘ 𝑑 ) Fn ω ) |
12 |
|
fniunfv |
⊢ ( ( 𝑈 ‘ 𝑑 ) Fn ω → ∪ 𝑐 ∈ ω ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) = ∪ ran ( 𝑈 ‘ 𝑑 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝑑 ∈ 𝑆 → ∪ 𝑐 ∈ ω ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) = ∪ ran ( 𝑈 ‘ 𝑑 ) ) |
14 |
10 13
|
eqtr4id |
⊢ ( 𝑑 ∈ 𝑆 → ( TC ‘ 𝑑 ) = ∪ 𝑐 ∈ ω ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) |
15 |
14
|
imaeq2d |
⊢ ( 𝑑 ∈ 𝑆 → ( rank “ ( TC ‘ 𝑑 ) ) = ( rank “ ∪ 𝑐 ∈ ω ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) |
16 |
|
imaiun |
⊢ ( rank “ ∪ 𝑐 ∈ ω ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) = ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) |
17 |
16
|
a1i |
⊢ ( 𝑑 ∈ 𝑆 → ( rank “ ∪ 𝑐 ∈ ω ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) = ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) |
18 |
9 15 17
|
3eqtrd |
⊢ ( 𝑑 ∈ 𝑆 → ( rank ‘ 𝑑 ) = ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) |
19 |
|
dmresi |
⊢ dom ( I ↾ ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) = ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) |
20 |
18 19
|
eqtr4di |
⊢ ( 𝑑 ∈ 𝑆 → ( rank ‘ 𝑑 ) = dom ( I ↾ ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) ) |
21 |
|
rankon |
⊢ ( rank ‘ 𝑑 ) ∈ On |
22 |
18 21
|
eqeltrrdi |
⊢ ( 𝑑 ∈ 𝑆 → ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ∈ On ) |
23 |
|
eloni |
⊢ ( ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ∈ On → Ord ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) |
24 |
|
oiid |
⊢ ( Ord ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) → OrdIso ( E , ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) = ( I ↾ ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) ) |
25 |
22 23 24
|
3syl |
⊢ ( 𝑑 ∈ 𝑆 → OrdIso ( E , ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) = ( I ↾ ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) ) |
26 |
25
|
dmeqd |
⊢ ( 𝑑 ∈ 𝑆 → dom OrdIso ( E , ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) = dom ( I ↾ ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) ) |
27 |
20 26
|
eqtr4d |
⊢ ( 𝑑 ∈ 𝑆 → ( rank ‘ 𝑑 ) = dom OrdIso ( E , ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) ) |
28 |
|
omex |
⊢ ω ∈ V |
29 |
|
wdomref |
⊢ ( ω ∈ V → ω ≼* ω ) |
30 |
28 29
|
mp1i |
⊢ ( 𝑑 ∈ 𝑆 → ω ≼* ω ) |
31 |
|
frfnom |
⊢ ( rec ( ( 𝑧 ∈ V ↦ ( har ‘ 𝒫 ( 𝑋 × 𝑧 ) ) ) , ( har ‘ 𝒫 𝑋 ) ) ↾ ω ) Fn ω |
32 |
2
|
fneq1i |
⊢ ( 𝐻 Fn ω ↔ ( rec ( ( 𝑧 ∈ V ↦ ( har ‘ 𝒫 ( 𝑋 × 𝑧 ) ) ) , ( har ‘ 𝒫 𝑋 ) ) ↾ ω ) Fn ω ) |
33 |
31 32
|
mpbir |
⊢ 𝐻 Fn ω |
34 |
|
fniunfv |
⊢ ( 𝐻 Fn ω → ∪ 𝑎 ∈ ω ( 𝐻 ‘ 𝑎 ) = ∪ ran 𝐻 ) |
35 |
33 34
|
ax-mp |
⊢ ∪ 𝑎 ∈ ω ( 𝐻 ‘ 𝑎 ) = ∪ ran 𝐻 |
36 |
|
iunon |
⊢ ( ( ω ∈ V ∧ ∀ 𝑎 ∈ ω ( 𝐻 ‘ 𝑎 ) ∈ On ) → ∪ 𝑎 ∈ ω ( 𝐻 ‘ 𝑎 ) ∈ On ) |
37 |
28 36
|
mpan |
⊢ ( ∀ 𝑎 ∈ ω ( 𝐻 ‘ 𝑎 ) ∈ On → ∪ 𝑎 ∈ ω ( 𝐻 ‘ 𝑎 ) ∈ On ) |
38 |
2
|
hsmexlem9 |
⊢ ( 𝑎 ∈ ω → ( 𝐻 ‘ 𝑎 ) ∈ On ) |
39 |
37 38
|
mprg |
⊢ ∪ 𝑎 ∈ ω ( 𝐻 ‘ 𝑎 ) ∈ On |
40 |
35 39
|
eqeltrri |
⊢ ∪ ran 𝐻 ∈ On |
41 |
40
|
a1i |
⊢ ( 𝑑 ∈ 𝑆 → ∪ ran 𝐻 ∈ On ) |
42 |
|
fvssunirn |
⊢ ( 𝐻 ‘ 𝑐 ) ⊆ ∪ ran 𝐻 |
43 |
|
eqid |
⊢ OrdIso ( E , ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) = OrdIso ( E , ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) |
44 |
1 2 3 4 43
|
hsmexlem4 |
⊢ ( ( 𝑐 ∈ ω ∧ 𝑑 ∈ 𝑆 ) → dom OrdIso ( E , ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) ∈ ( 𝐻 ‘ 𝑐 ) ) |
45 |
44
|
ancoms |
⊢ ( ( 𝑑 ∈ 𝑆 ∧ 𝑐 ∈ ω ) → dom OrdIso ( E , ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) ∈ ( 𝐻 ‘ 𝑐 ) ) |
46 |
42 45
|
sselid |
⊢ ( ( 𝑑 ∈ 𝑆 ∧ 𝑐 ∈ ω ) → dom OrdIso ( E , ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) ∈ ∪ ran 𝐻 ) |
47 |
|
imassrn |
⊢ ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ⊆ ran rank |
48 |
|
rankf |
⊢ rank : ∪ ( 𝑅1 “ On ) ⟶ On |
49 |
|
frn |
⊢ ( rank : ∪ ( 𝑅1 “ On ) ⟶ On → ran rank ⊆ On ) |
50 |
48 49
|
ax-mp |
⊢ ran rank ⊆ On |
51 |
47 50
|
sstri |
⊢ ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ⊆ On |
52 |
|
ffun |
⊢ ( rank : ∪ ( 𝑅1 “ On ) ⟶ On → Fun rank ) |
53 |
|
fvex |
⊢ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ∈ V |
54 |
53
|
funimaex |
⊢ ( Fun rank → ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ∈ V ) |
55 |
48 52 54
|
mp2b |
⊢ ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ∈ V |
56 |
55
|
elpw |
⊢ ( ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ∈ 𝒫 On ↔ ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ⊆ On ) |
57 |
51 56
|
mpbir |
⊢ ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ∈ 𝒫 On |
58 |
46 57
|
jctil |
⊢ ( ( 𝑑 ∈ 𝑆 ∧ 𝑐 ∈ ω ) → ( ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ∈ 𝒫 On ∧ dom OrdIso ( E , ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) ∈ ∪ ran 𝐻 ) ) |
59 |
58
|
ralrimiva |
⊢ ( 𝑑 ∈ 𝑆 → ∀ 𝑐 ∈ ω ( ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ∈ 𝒫 On ∧ dom OrdIso ( E , ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) ∈ ∪ ran 𝐻 ) ) |
60 |
|
eqid |
⊢ OrdIso ( E , ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) = OrdIso ( E , ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) |
61 |
43 60
|
hsmexlem3 |
⊢ ( ( ( ω ≼* ω ∧ ∪ ran 𝐻 ∈ On ) ∧ ∀ 𝑐 ∈ ω ( ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ∈ 𝒫 On ∧ dom OrdIso ( E , ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) ∈ ∪ ran 𝐻 ) ) → dom OrdIso ( E , ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) ∈ ( har ‘ 𝒫 ( ω × ∪ ran 𝐻 ) ) ) |
62 |
30 41 59 61
|
syl21anc |
⊢ ( 𝑑 ∈ 𝑆 → dom OrdIso ( E , ∪ 𝑐 ∈ ω ( rank “ ( ( 𝑈 ‘ 𝑑 ) ‘ 𝑐 ) ) ) ∈ ( har ‘ 𝒫 ( ω × ∪ ran 𝐻 ) ) ) |
63 |
27 62
|
eqeltrd |
⊢ ( 𝑑 ∈ 𝑆 → ( rank ‘ 𝑑 ) ∈ ( har ‘ 𝒫 ( ω × ∪ ran 𝐻 ) ) ) |