| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hsmexlem4.x |
|- X e. _V |
| 2 |
|
hsmexlem4.h |
|- H = ( rec ( ( z e. _V |-> ( har ` ~P ( X X. z ) ) ) , ( har ` ~P X ) ) |` _om ) |
| 3 |
|
hsmexlem4.u |
|- U = ( x e. _V |-> ( rec ( ( y e. _V |-> U. y ) , x ) |` _om ) ) |
| 4 |
|
hsmexlem4.s |
|- S = { a e. U. ( R1 " On ) | A. b e. ( TC ` { a } ) b ~<_ X } |
| 5 |
|
hsmexlem4.o |
|- O = OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) |
| 6 |
|
fveq2 |
|- ( c = (/) -> ( ( U ` d ) ` c ) = ( ( U ` d ) ` (/) ) ) |
| 7 |
6
|
imaeq2d |
|- ( c = (/) -> ( rank " ( ( U ` d ) ` c ) ) = ( rank " ( ( U ` d ) ` (/) ) ) ) |
| 8 |
|
oieq2 |
|- ( ( rank " ( ( U ` d ) ` c ) ) = ( rank " ( ( U ` d ) ` (/) ) ) -> OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) ) |
| 9 |
7 8
|
syl |
|- ( c = (/) -> OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) ) |
| 10 |
5 9
|
eqtrid |
|- ( c = (/) -> O = OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) ) |
| 11 |
10
|
dmeqd |
|- ( c = (/) -> dom O = dom OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) ) |
| 12 |
|
fveq2 |
|- ( c = (/) -> ( H ` c ) = ( H ` (/) ) ) |
| 13 |
11 12
|
eleq12d |
|- ( c = (/) -> ( dom O e. ( H ` c ) <-> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) e. ( H ` (/) ) ) ) |
| 14 |
13
|
ralbidv |
|- ( c = (/) -> ( A. d e. S dom O e. ( H ` c ) <-> A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) e. ( H ` (/) ) ) ) |
| 15 |
|
fveq2 |
|- ( c = e -> ( ( U ` d ) ` c ) = ( ( U ` d ) ` e ) ) |
| 16 |
15
|
imaeq2d |
|- ( c = e -> ( rank " ( ( U ` d ) ` c ) ) = ( rank " ( ( U ` d ) ` e ) ) ) |
| 17 |
|
oieq2 |
|- ( ( rank " ( ( U ` d ) ` c ) ) = ( rank " ( ( U ` d ) ` e ) ) -> OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) ) |
| 18 |
16 17
|
syl |
|- ( c = e -> OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) ) |
| 19 |
5 18
|
eqtrid |
|- ( c = e -> O = OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) ) |
| 20 |
19
|
dmeqd |
|- ( c = e -> dom O = dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) ) |
| 21 |
|
fveq2 |
|- ( c = e -> ( H ` c ) = ( H ` e ) ) |
| 22 |
20 21
|
eleq12d |
|- ( c = e -> ( dom O e. ( H ` c ) <-> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) ) ) |
| 23 |
22
|
ralbidv |
|- ( c = e -> ( A. d e. S dom O e. ( H ` c ) <-> A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) ) ) |
| 24 |
|
fveq2 |
|- ( c = suc e -> ( ( U ` d ) ` c ) = ( ( U ` d ) ` suc e ) ) |
| 25 |
24
|
imaeq2d |
|- ( c = suc e -> ( rank " ( ( U ` d ) ` c ) ) = ( rank " ( ( U ` d ) ` suc e ) ) ) |
| 26 |
|
oieq2 |
|- ( ( rank " ( ( U ` d ) ` c ) ) = ( rank " ( ( U ` d ) ` suc e ) ) -> OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) ) |
| 27 |
25 26
|
syl |
|- ( c = suc e -> OrdIso ( _E , ( rank " ( ( U ` d ) ` c ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) ) |
| 28 |
5 27
|
eqtrid |
|- ( c = suc e -> O = OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) ) |
| 29 |
28
|
dmeqd |
|- ( c = suc e -> dom O = dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) ) |
| 30 |
|
fveq2 |
|- ( c = suc e -> ( H ` c ) = ( H ` suc e ) ) |
| 31 |
29 30
|
eleq12d |
|- ( c = suc e -> ( dom O e. ( H ` c ) <-> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) e. ( H ` suc e ) ) ) |
| 32 |
31
|
ralbidv |
|- ( c = suc e -> ( A. d e. S dom O e. ( H ` c ) <-> A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) e. ( H ` suc e ) ) ) |
| 33 |
|
imassrn |
|- ( rank " ( ( U ` d ) ` (/) ) ) C_ ran rank |
| 34 |
|
rankf |
|- rank : U. ( R1 " On ) --> On |
| 35 |
|
frn |
|- ( rank : U. ( R1 " On ) --> On -> ran rank C_ On ) |
| 36 |
34 35
|
ax-mp |
|- ran rank C_ On |
| 37 |
33 36
|
sstri |
|- ( rank " ( ( U ` d ) ` (/) ) ) C_ On |
| 38 |
3
|
ituni0 |
|- ( d e. _V -> ( ( U ` d ) ` (/) ) = d ) |
| 39 |
38
|
elv |
|- ( ( U ` d ) ` (/) ) = d |
| 40 |
39
|
imaeq2i |
|- ( rank " ( ( U ` d ) ` (/) ) ) = ( rank " d ) |
| 41 |
|
ffun |
|- ( rank : U. ( R1 " On ) --> On -> Fun rank ) |
| 42 |
34 41
|
ax-mp |
|- Fun rank |
| 43 |
|
vex |
|- d e. _V |
| 44 |
|
wdomimag |
|- ( ( Fun rank /\ d e. _V ) -> ( rank " d ) ~<_* d ) |
| 45 |
42 43 44
|
mp2an |
|- ( rank " d ) ~<_* d |
| 46 |
|
sneq |
|- ( a = d -> { a } = { d } ) |
| 47 |
46
|
fveq2d |
|- ( a = d -> ( TC ` { a } ) = ( TC ` { d } ) ) |
| 48 |
47
|
raleqdv |
|- ( a = d -> ( A. b e. ( TC ` { a } ) b ~<_ X <-> A. b e. ( TC ` { d } ) b ~<_ X ) ) |
| 49 |
48 4
|
elrab2 |
|- ( d e. S <-> ( d e. U. ( R1 " On ) /\ A. b e. ( TC ` { d } ) b ~<_ X ) ) |
| 50 |
49
|
simprbi |
|- ( d e. S -> A. b e. ( TC ` { d } ) b ~<_ X ) |
| 51 |
|
vsnex |
|- { d } e. _V |
| 52 |
|
tcid |
|- ( { d } e. _V -> { d } C_ ( TC ` { d } ) ) |
| 53 |
51 52
|
ax-mp |
|- { d } C_ ( TC ` { d } ) |
| 54 |
|
vsnid |
|- d e. { d } |
| 55 |
53 54
|
sselii |
|- d e. ( TC ` { d } ) |
| 56 |
|
breq1 |
|- ( b = d -> ( b ~<_ X <-> d ~<_ X ) ) |
| 57 |
56
|
rspcv |
|- ( d e. ( TC ` { d } ) -> ( A. b e. ( TC ` { d } ) b ~<_ X -> d ~<_ X ) ) |
| 58 |
55 57
|
ax-mp |
|- ( A. b e. ( TC ` { d } ) b ~<_ X -> d ~<_ X ) |
| 59 |
|
domwdom |
|- ( d ~<_ X -> d ~<_* X ) |
| 60 |
50 58 59
|
3syl |
|- ( d e. S -> d ~<_* X ) |
| 61 |
|
wdomtr |
|- ( ( ( rank " d ) ~<_* d /\ d ~<_* X ) -> ( rank " d ) ~<_* X ) |
| 62 |
45 60 61
|
sylancr |
|- ( d e. S -> ( rank " d ) ~<_* X ) |
| 63 |
40 62
|
eqbrtrid |
|- ( d e. S -> ( rank " ( ( U ` d ) ` (/) ) ) ~<_* X ) |
| 64 |
|
eqid |
|- OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) = OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) |
| 65 |
64
|
hsmexlem1 |
|- ( ( ( rank " ( ( U ` d ) ` (/) ) ) C_ On /\ ( rank " ( ( U ` d ) ` (/) ) ) ~<_* X ) -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) e. ( har ` ~P X ) ) |
| 66 |
37 63 65
|
sylancr |
|- ( d e. S -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) e. ( har ` ~P X ) ) |
| 67 |
2
|
hsmexlem7 |
|- ( H ` (/) ) = ( har ` ~P X ) |
| 68 |
66 67
|
eleqtrrdi |
|- ( d e. S -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) e. ( H ` (/) ) ) |
| 69 |
68
|
rgen |
|- A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` (/) ) ) ) e. ( H ` (/) ) |
| 70 |
|
nfra1 |
|- F/ d A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) |
| 71 |
|
nfv |
|- F/ d e e. _om |
| 72 |
70 71
|
nfan |
|- F/ d ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ e e. _om ) |
| 73 |
3
|
ituniiun |
|- ( d e. _V -> ( ( U ` d ) ` suc e ) = U_ f e. d ( ( U ` f ) ` e ) ) |
| 74 |
73
|
elv |
|- ( ( U ` d ) ` suc e ) = U_ f e. d ( ( U ` f ) ` e ) |
| 75 |
74
|
imaeq2i |
|- ( rank " ( ( U ` d ) ` suc e ) ) = ( rank " U_ f e. d ( ( U ` f ) ` e ) ) |
| 76 |
|
imaiun |
|- ( rank " U_ f e. d ( ( U ` f ) ` e ) ) = U_ f e. d ( rank " ( ( U ` f ) ` e ) ) |
| 77 |
75 76
|
eqtri |
|- ( rank " ( ( U ` d ) ` suc e ) ) = U_ f e. d ( rank " ( ( U ` f ) ` e ) ) |
| 78 |
|
oieq2 |
|- ( ( rank " ( ( U ` d ) ` suc e ) ) = U_ f e. d ( rank " ( ( U ` f ) ` e ) ) -> OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) = OrdIso ( _E , U_ f e. d ( rank " ( ( U ` f ) ` e ) ) ) ) |
| 79 |
77 78
|
ax-mp |
|- OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) = OrdIso ( _E , U_ f e. d ( rank " ( ( U ` f ) ` e ) ) ) |
| 80 |
79
|
dmeqi |
|- dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) = dom OrdIso ( _E , U_ f e. d ( rank " ( ( U ` f ) ` e ) ) ) |
| 81 |
60
|
ad2antll |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) -> d ~<_* X ) |
| 82 |
2
|
hsmexlem9 |
|- ( e e. _om -> ( H ` e ) e. On ) |
| 83 |
82
|
ad2antrl |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) -> ( H ` e ) e. On ) |
| 84 |
|
fveq2 |
|- ( d = f -> ( U ` d ) = ( U ` f ) ) |
| 85 |
84
|
fveq1d |
|- ( d = f -> ( ( U ` d ) ` e ) = ( ( U ` f ) ` e ) ) |
| 86 |
85
|
imaeq2d |
|- ( d = f -> ( rank " ( ( U ` d ) ` e ) ) = ( rank " ( ( U ` f ) ` e ) ) ) |
| 87 |
|
oieq2 |
|- ( ( rank " ( ( U ` d ) ` e ) ) = ( rank " ( ( U ` f ) ` e ) ) -> OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) = OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) ) |
| 88 |
86 87
|
syl |
|- ( d = f -> OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) = OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) ) |
| 89 |
88
|
dmeqd |
|- ( d = f -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) = dom OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) ) |
| 90 |
89
|
eleq1d |
|- ( d = f -> ( dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) <-> dom OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) e. ( H ` e ) ) ) |
| 91 |
|
simpll |
|- ( ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) /\ f e. d ) -> A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) ) |
| 92 |
4
|
ssrab3 |
|- S C_ U. ( R1 " On ) |
| 93 |
92
|
sseli |
|- ( d e. S -> d e. U. ( R1 " On ) ) |
| 94 |
|
r1elssi |
|- ( d e. U. ( R1 " On ) -> d C_ U. ( R1 " On ) ) |
| 95 |
93 94
|
syl |
|- ( d e. S -> d C_ U. ( R1 " On ) ) |
| 96 |
95
|
sselda |
|- ( ( d e. S /\ f e. d ) -> f e. U. ( R1 " On ) ) |
| 97 |
|
snssi |
|- ( f e. d -> { f } C_ d ) |
| 98 |
43
|
tcss |
|- ( { f } C_ d -> ( TC ` { f } ) C_ ( TC ` d ) ) |
| 99 |
97 98
|
syl |
|- ( f e. d -> ( TC ` { f } ) C_ ( TC ` d ) ) |
| 100 |
51
|
tcel |
|- ( d e. { d } -> ( TC ` d ) C_ ( TC ` { d } ) ) |
| 101 |
54 100
|
mp1i |
|- ( f e. d -> ( TC ` d ) C_ ( TC ` { d } ) ) |
| 102 |
99 101
|
sstrd |
|- ( f e. d -> ( TC ` { f } ) C_ ( TC ` { d } ) ) |
| 103 |
|
ssralv |
|- ( ( TC ` { f } ) C_ ( TC ` { d } ) -> ( A. b e. ( TC ` { d } ) b ~<_ X -> A. b e. ( TC ` { f } ) b ~<_ X ) ) |
| 104 |
102 103
|
syl |
|- ( f e. d -> ( A. b e. ( TC ` { d } ) b ~<_ X -> A. b e. ( TC ` { f } ) b ~<_ X ) ) |
| 105 |
50 104
|
mpan9 |
|- ( ( d e. S /\ f e. d ) -> A. b e. ( TC ` { f } ) b ~<_ X ) |
| 106 |
|
sneq |
|- ( a = f -> { a } = { f } ) |
| 107 |
106
|
fveq2d |
|- ( a = f -> ( TC ` { a } ) = ( TC ` { f } ) ) |
| 108 |
107
|
raleqdv |
|- ( a = f -> ( A. b e. ( TC ` { a } ) b ~<_ X <-> A. b e. ( TC ` { f } ) b ~<_ X ) ) |
| 109 |
108 4
|
elrab2 |
|- ( f e. S <-> ( f e. U. ( R1 " On ) /\ A. b e. ( TC ` { f } ) b ~<_ X ) ) |
| 110 |
96 105 109
|
sylanbrc |
|- ( ( d e. S /\ f e. d ) -> f e. S ) |
| 111 |
110
|
adantll |
|- ( ( ( e e. _om /\ d e. S ) /\ f e. d ) -> f e. S ) |
| 112 |
111
|
adantll |
|- ( ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) /\ f e. d ) -> f e. S ) |
| 113 |
90 91 112
|
rspcdva |
|- ( ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) /\ f e. d ) -> dom OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) e. ( H ` e ) ) |
| 114 |
|
imassrn |
|- ( rank " ( ( U ` f ) ` e ) ) C_ ran rank |
| 115 |
114 36
|
sstri |
|- ( rank " ( ( U ` f ) ` e ) ) C_ On |
| 116 |
|
fvex |
|- ( ( U ` f ) ` e ) e. _V |
| 117 |
116
|
funimaex |
|- ( Fun rank -> ( rank " ( ( U ` f ) ` e ) ) e. _V ) |
| 118 |
42 117
|
ax-mp |
|- ( rank " ( ( U ` f ) ` e ) ) e. _V |
| 119 |
118
|
elpw |
|- ( ( rank " ( ( U ` f ) ` e ) ) e. ~P On <-> ( rank " ( ( U ` f ) ` e ) ) C_ On ) |
| 120 |
115 119
|
mpbir |
|- ( rank " ( ( U ` f ) ` e ) ) e. ~P On |
| 121 |
113 120
|
jctil |
|- ( ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) /\ f e. d ) -> ( ( rank " ( ( U ` f ) ` e ) ) e. ~P On /\ dom OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) e. ( H ` e ) ) ) |
| 122 |
121
|
ralrimiva |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) -> A. f e. d ( ( rank " ( ( U ` f ) ` e ) ) e. ~P On /\ dom OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) e. ( H ` e ) ) ) |
| 123 |
|
eqid |
|- OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) = OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) |
| 124 |
|
eqid |
|- OrdIso ( _E , U_ f e. d ( rank " ( ( U ` f ) ` e ) ) ) = OrdIso ( _E , U_ f e. d ( rank " ( ( U ` f ) ` e ) ) ) |
| 125 |
123 124
|
hsmexlem3 |
|- ( ( ( d ~<_* X /\ ( H ` e ) e. On ) /\ A. f e. d ( ( rank " ( ( U ` f ) ` e ) ) e. ~P On /\ dom OrdIso ( _E , ( rank " ( ( U ` f ) ` e ) ) ) e. ( H ` e ) ) ) -> dom OrdIso ( _E , U_ f e. d ( rank " ( ( U ` f ) ` e ) ) ) e. ( har ` ~P ( X X. ( H ` e ) ) ) ) |
| 126 |
81 83 122 125
|
syl21anc |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) -> dom OrdIso ( _E , U_ f e. d ( rank " ( ( U ` f ) ` e ) ) ) e. ( har ` ~P ( X X. ( H ` e ) ) ) ) |
| 127 |
80 126
|
eqeltrid |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) e. ( har ` ~P ( X X. ( H ` e ) ) ) ) |
| 128 |
2
|
hsmexlem8 |
|- ( e e. _om -> ( H ` suc e ) = ( har ` ~P ( X X. ( H ` e ) ) ) ) |
| 129 |
128
|
ad2antrl |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) -> ( H ` suc e ) = ( har ` ~P ( X X. ( H ` e ) ) ) ) |
| 130 |
127 129
|
eleqtrrd |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ ( e e. _om /\ d e. S ) ) -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) e. ( H ` suc e ) ) |
| 131 |
130
|
expr |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ e e. _om ) -> ( d e. S -> dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) e. ( H ` suc e ) ) ) |
| 132 |
72 131
|
ralrimi |
|- ( ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) /\ e e. _om ) -> A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) e. ( H ` suc e ) ) |
| 133 |
132
|
expcom |
|- ( e e. _om -> ( A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` e ) ) ) e. ( H ` e ) -> A. d e. S dom OrdIso ( _E , ( rank " ( ( U ` d ) ` suc e ) ) ) e. ( H ` suc e ) ) ) |
| 134 |
14 23 32 69 133
|
finds1 |
|- ( c e. _om -> A. d e. S dom O e. ( H ` c ) ) |
| 135 |
134
|
r19.21bi |
|- ( ( c e. _om /\ d e. S ) -> dom O e. ( H ` c ) ) |