Metamath Proof Explorer


Theorem hstrlem3

Description: Lemma for strong set of CH states theorem: the function S , that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. This lemma restates the hypotheses in a more convenient form to work with. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hstrlem3.1 S=xCprojxu
hstrlem3.2 φuABnormu=1
hstrlem3.3 AC
hstrlem3.4 BC
Assertion hstrlem3 φSCHStates

Proof

Step Hyp Ref Expression
1 hstrlem3.1 S=xCprojxu
2 hstrlem3.2 φuABnormu=1
3 hstrlem3.3 AC
4 hstrlem3.4 BC
5 eldifi uABuA
6 3 cheli uAu
7 5 6 syl uABu
8 1 hstrlem3a unormu=1SCHStates
9 7 8 sylan uABnormu=1SCHStates
10 2 9 sylbi φSCHStates