Metamath Proof Explorer


Theorem hstrlem4

Description: Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypotheses hstrlem3.1 S=xCprojxu
hstrlem3.2 φuABnormu=1
hstrlem3.3 AC
hstrlem3.4 BC
Assertion hstrlem4 φnormSA=1

Proof

Step Hyp Ref Expression
1 hstrlem3.1 S=xCprojxu
2 hstrlem3.2 φuABnormu=1
3 hstrlem3.3 AC
4 hstrlem3.4 BC
5 1 hstrlem2 ACSA=projAu
6 3 5 ax-mp SA=projAu
7 6 fveq2i normSA=normprojAu
8 eldifi uABuA
9 pjid ACuAprojAu=u
10 3 9 mpan uAprojAu=u
11 10 fveq2d uAnormprojAu=normu
12 eqeq2 normu=1normprojAu=normunormprojAu=1
13 11 12 imbitrid normu=1uAnormprojAu=1
14 8 13 mpan9 uABnormu=1normprojAu=1
15 2 14 sylbi φnormprojAu=1
16 7 15 eqtrid φnormSA=1