Metamath Proof Explorer


Theorem hvaddeq0

Description: If the sum of two vectors is zero, one is the negative of the other. (Contributed by NM, 10-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hvaddeq0 ABA+B=0A=-1B

Proof

Step Hyp Ref Expression
1 hvaddsubval ABA+B=A--1B
2 1 eqeq1d ABA+B=0A--1B=0
3 neg1cn 1
4 hvmulcl 1B-1B
5 3 4 mpan B-1B
6 hvsubeq0 A-1BA--1B=0A=-1B
7 5 6 sylan2 ABA--1B=0A=-1B
8 2 7 bitrd ABA+B=0A=-1B