Metamath Proof Explorer


Theorem hvaddsubval

Description: Value of vector addition in terms of vector subtraction. (Contributed by NM, 10-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hvaddsubval ABA+B=A--1B

Proof

Step Hyp Ref Expression
1 neg1cn 1
2 hvmulcl 1B-1B
3 1 2 mpan B-1B
4 hvsubval A-1BA--1B=A+-1-1B
5 3 4 sylan2 ABA--1B=A+-1-1B
6 hvm1neg 1B-1-1B=-1B
7 1 6 mpan B-1-1B=-1B
8 negneg1e1 -1=1
9 8 oveq1i -1B=1B
10 7 9 eqtrdi B-1-1B=1B
11 ax-hvmulid B1B=B
12 10 11 eqtrd B-1-1B=B
13 12 adantl AB-1-1B=B
14 13 oveq2d ABA+-1-1B=A+B
15 5 14 eqtr2d ABA+B=A--1B