Metamath Proof Explorer


Theorem i1fima2sn

Description: Preimage of a singleton. (Contributed by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion i1fima2sn Fdom1AB0volF-1A

Proof

Step Hyp Ref Expression
1 eldifn AB0¬A0
2 elsni 0A0=A
3 snidg 0A00
4 2 3 eqeltrrd 0AA0
5 1 4 nsyl AB0¬0A
6 i1fima2 Fdom1¬0AvolF-1A
7 5 6 sylan2 Fdom1AB0volF-1A