Metamath Proof Explorer


Theorem iccnct

Description: A closed interval, with more than one element is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses iccnct.a φA*
iccnct.b φB*
iccnct.l φA<B
iccnct.c C=AB
Assertion iccnct φ¬Cω

Proof

Step Hyp Ref Expression
1 iccnct.a φA*
2 iccnct.b φB*
3 iccnct.l φA<B
4 iccnct.c C=AB
5 eqid AB=AB
6 1 2 3 5 ioonct φ¬ABω
7 ioossicc ABAB
8 7 4 sseqtrri ABC
9 8 a1i φABC
10 6 9 ssnct φ¬Cω